METHODOLOGY/PRINCIPAL FINDINGS: After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region.
CONCLUSIONS/SIGNIFICANCE: We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment.
DESIGN: Multicenter retrospective case series.
METHODS: Retrospective review.
RESULTS: Seven patients presented with corneal findings ranging from superficial punctate epitheliopathy to bilateral corneal melt with subsequent perforation. Among those with mild corneal findings, resolution was achieved with topical steroids and lubrication, whereas some patients who developed progressive corneal melt required therapeutic penetrating keratoplasty. The history in all patients revealed exposure to aquarium zoanthid corals shortly before disease onset. A review of the literature revealed that there are few prior reports of coral-associated corneal toxicity and that some species of coral secrete a substance known as palytoxin, a potent vasoconstrictor that inhibits the membranous sodium-potassium ATPase pump across cell types and can cause rapid death if inhaled or ingested.
CONCLUSIONS: This is the largest case series to date demonstrating patients with aquarium coral palytoxin-associated corneal toxicity, and is the first to provide details of related histopathologic findings. Similar to other forms of toxic keratoconjunctivitis, a detailed history and careful clinical assessment are required, as well as timely removal of the offending agent from the patients' ocular milieu and environment. Mild ocular surface and corneal disease may be treated effectively with aggressive topical steroid therapy and lubrication. Given the potential severity of ocular as well as systemic adverse effects, there should be increased awareness of this entity among eye care professionals, aquarium enthusiasts, and the general public.
RESULTS: We obtained survey responses from 87 out of 148 clinicians (62%) from 13 countries and regions. In China, 1385 DMD patients were followed-up by 5 respondent neurologists, and 84% were between 0 and 9 years of age (15% were 10-19 years, 1% > 19 years). While in Japan, 1032 patients were followed-up by 20 clinicians, and the age distribution was similar between the 3 groups (27% were 0-9 years, 35% were 10-19 years, 38% were >19 years). Most respondent clinicians (91%) were aware of DMD standard of care recommendations. Daily prednisolone/prednisone administration was used most frequently at initiation (N = 45, 64%). Inconsistent opinion on steroid therapy after loss of ambulation and medication for bone protection was observed.
CONCLUSIONS: Rare disease research infrastructures have been underdeveloped in many of Asian and Oceanian countries. In this situation, our results show the snapshots of current medical situation and clinical practice in DMD. For further epidemiological studies, expansion of DMD registries is necessary.
METHODS: We conducted a phase 1, first-in-human trial combining crenigacestat with BCMA CAR T-cells at a single cancer centre in Seattle, WA, USA. We included individuals aged 21 years or older with relapsed or refractory multiple myeloma, previous autologous stem-cell transplant or persistent disease after more than four cycles of induction therapy, and Eastern Cooperative Oncology Group performance status of 0-2, regardless of previous BCMA-targeted therapy. To assess the effect of the GSI on BCMA surface density on bone marrow plasma cells, participants received GSI during a pretreatment run-in, consisting of three doses administered 48 h apart. BCMA CAR T cells were infused at doses of 50 × 106 CAR T cells, 150 × 106 CAR T cells, 300 × 106 CAR T cells, and 450 × 106 CAR T cells (total cell dose), in combination with the 25 mg crenigacestat dosed three times a week for up to nine doses. The primary endpoints were the safety and recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat, an oral GSI. This study is registered with ClinicalTrials.gov, NCT03502577, and has met accrual goals.
FINDINGS: 19 participants were enrolled between June 1, 2018, and March 1, 2021, and one participant did not proceed with BCMA CAR T-cell infusion. 18 participants (eight [44%] men and ten [56%] women) with multiple myeloma received treatment between July 11, 2018, and April 14, 2021, with a median follow up of 36 months (95% CI 26 to not reached). The most common non-haematological adverse events of grade 3 or higher were hypophosphataemia in 14 (78%) participants, fatigue in 11 (61%), hypocalcaemia in nine (50%), and hypertension in seven (39%). Two deaths reported outside of the 28-day adverse event collection window were related to treatment. Participants were treated at doses up to 450 × 106 CAR+ cells, and the recommended phase 2 dose was not reached.
INTERPRETATIONS: Combining a GSI with BCMA CAR T cells appears to be well tolerated, and crenigacestat increases target antigen density. Deep responses were observed among heavily pretreated participants with multiple myeloma who had previously received BCMA-targeted therapy and those who were naive to previous BCMA-targeted therapy. Further study of GSIs given with BCMA-targeted therapeutics is warranted in clinical trials.
FUNDING: Juno Therapeutics-a Bristol Myers Squibb company and the National Institutes of Health.
METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.
CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.