Displaying publications 61 - 80 of 84 in total

Abstract:
Sort:
  1. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
  2. Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, Yong VC
    Front Microbiol, 2019 08 13;10:1870.
    PMID: 31456783 DOI: 10.3389/fmicb.2019.01870
    [This corrects the article DOI: 10.3389/fmicb.2019.01136.].
  3. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    Open Life Sci, 2018 Jan;13:279-284.
    PMID: 33817094 DOI: 10.1515/biol-2018-0034
    Most studies highlight mesenchymal stem cells (MSCs) extracted primarily from bone marrow (BM), very few report the use of peripheral blood (PB), often due to the associated low seeding density and difficulties with extraction techniques. As ageing populations are becoming more predominant globally, together with escalating demands for MSC transplantation and tissue regeneration, obtaining quality MSCs suitable for induced differentiation and biological therapies becomes increasingly important. In this study, BM and PB were obtained from elderly patients and extracted MSCs grown in vitro to determine their successful isolation and expansion. Patients' socio-demographic background and other medical information were obtained from medical records. Successful and failed cultures were correlated with key demographic and medical parameters. A total of 112 samples (BM or PB) were used for this study. Of these, 50 samples (44.6%) were successfully cultured according to standardised criteria with no signs of contamination. Our comparative analyses demonstrated no statistical correlation between successful MSC cultures and any of the six demographic or medical parameters examined, including sample quantity, age, sex, race, habits and underlying comorbidities of sample donors. In conclusion, the present study demonstrates that typical demographics and comorbidities do not influence successful MSC isolation and expansion in culture.
  4. Chong PP, Panjavarnam P, Ahmad WNHW, Chan CK, Abbas AA, Merican AM, et al.
    Clin Biomech (Bristol, Avon), 2020 10;79:105178.
    PMID: 32988676 DOI: 10.1016/j.clinbiomech.2020.105178
    BACKGROUND: Cartilage damage, which can potentially lead to osteoarthritis, is a leading cause of morbidity in the elderly population. Chondrocytes are sensitive to mechanical stimuli and their matrix-protein synthesis may be altered when chondrocytes experience a variety of in vivo loadings. Therefore, a study was conducted to evaluate the biosynthesis of isolated osteoarthritic chondrocytes which subjected to compression with varying dynamic compressive strains and loading durations.

    METHODS: The proximal tibia was resected as a single osteochondral unit during total knee replacement from patients (N = 10). The osteoarthritic chondrocytes were isolated from the osteochondral units, and characterized using reverse transcriptase-polymerase chain reaction. The isolated osteoarthritic chondrocytes were cultured and embedded in agarose, and then subjected to 10% and 20% uniaxial dynamic compression up to 8-days using a bioreactor. The morphological features and changes in the osteoarthritic chondrocytes upon compression were evaluated using scanning electron microscopy. Safranin O was used to detect the presence of cartilage matrix proteoglycan expression while quantitative analysis was conducted by measuring type VI collagen using an immunohistochemistry and fluorescence intensity assay.

    FINDINGS: Gene expression analysis indicated that the isolated osteoarthritic chondrocytes expressed chondrocyte-specific markers, including BGN, CD90 and HSPG-2. Moreover, the compressed osteoarthritic chondrocytes showed a more intense and broader deposition of proteoglycan and type VI collagen than control. The expression of type VI collagen was directly proportional to the duration of compression in which 8-days compression was significantly higher than 4-days compression. The 20% compression showed significantly higher intensity compared to 10% compression in 4- and 8-days.

    INTERPRETATION: The biosynthetic activity of human chondrocytes from osteoarthritic joints can be enhanced using selected compression regimes.

  5. Chong PP, Lee YL, Tan BC, Ng KP
    J Med Microbiol, 2003 Aug;52(Pt 8):657-66.
    PMID: 12867559
    The aims of this study were to compare the genetic relatedness of: (i) sequential and single isolates of Candida strains from women with recurrent vaginal candidiasis (RVC); and (ii) Candida strains from women who had only one episode of infection within a 1-year period. In total, 87 isolates from 71 patients were cultured, speciated and genotyped by random amplification of polymorphic DNA (RAPD) analysis. Patients were categorized into three groups, namely those with: (i) a history of RVC from whom two or more yeast isolates were obtained (group A); (ii) a history of RVC from whom only a single isolate was obtained (group B); and (iii) a single episode of vaginal candidiasis within a 1-year period (group C). Six yeast species were detected: Candida albicans, Candida glabrata, Candida lusitaniae, Candida famata, Candida krusei and Candida parapsilosis. Interestingly, the prevalence of non-albicans species was higher in group A patients (50 %) than in patients in groups B (36 %) or C (18.9 %). Eighty RAPD profiles were observed, with a total of 61 polymorphic PCR fragments of distinct sizes. Clustering analysis showed that, overall, the majority of patients in group A had recurrent infections caused by highly similar, but not identical, sequential strains [mean pairwise similarity coefficient (S(AB)) = 0.721 +/- 0.308]. The range of mean S(AB) values for intergroup comparisons for C. albicans isolates alone was 0.50-0.56, suggesting that there was no significant relatedness between strains from different groups. Genetic similarity of C. albicans isolates from patients in group A was lower than that of C. albicans isolates from patients in group C (mean S(AB) = 0.532 +/- 0.249 and 0.636 +/- 0.206, respectively); this difference was statistically significant (P = 0.036). These results demonstrate that the cause of recurrent infections varies among individuals and ranges between strain maintenance, strain microevolution and strain replacement; the major scenario is strain maintenance with microevolution. They also show that C. albicans strains that cause recurrent infections are less similar to each other than strains that cause one-off infections, suggesting that the former may represent more virulent subtypes.
  6. Chong PP, Chieng DC, Low LY, Hafeez A, Shamsudin MN, Seow HF, et al.
    J Med Microbiol, 2006 Apr;55(Pt 4):423-428.
    PMID: 16533990 DOI: 10.1099/jmm.0.46045-0
    The incidence of candidaemia among immunocompromised patients in Malaysia is increasing at an alarming rate. Isolation of clinical strains that are resistant to fluconazole has also risen markedly. We report here the repeated isolation of Candida tropicalis from the blood of a neonatal patient with Hirschsprung's disease. In vitro fluconazole susceptibility tests of the eight isolates obtained at different time points showed that seven of the isolates were resistant and one isolate was scored as susceptible dose-dependent. Random amplification of polymorphic DNA fingerprinting of the isolates using three primers and subsequent phylogenetic analysis revealed that these isolates were highly similar strains having minor genetic divergence, with a mean pairwise similarity coefficient of 0.893+/-0.041. The source of the infectious agent was thought to be the central venous catheter, as culture of its tip produced fluconazole-resistant C. tropicalis. This study demonstrates the utility of applying molecular epidemiology techniques to complement traditional mycological culture and drug susceptibility tests for accurate and appropriate management of recurrent candidaemia and highlights the need for newer antifungals that can combat the emergence of fluconazole-resistant C. tropicalis strains.
  7. Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY
    Genes (Basel), 2018 Nov 07;9(11).
    PMID: 30405082 DOI: 10.3390/genes9110540
    Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
  8. Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, Yong VC
    Front Microbiol, 2019;10:1136.
    PMID: 31244784 DOI: 10.3389/fmicb.2019.01136
    Irritable bowel syndrome (IBS) is a functional disorder which affects a large proportion of the population globally. The precise etiology of IBS is still unknown, although consensus understanding proposes IBS to be of multifactorial origin with yet undefined subtypes. Genetic and epigenetic factors, stress-related nervous and endocrine systems, immune dysregulation and the brain-gut axis seem to be contributing factors that predispose individuals to IBS. In addition to food hypersensitivity, toxins and adverse life events, chronic infections and dysbiotic gut microbiota have been suggested to trigger IBS symptoms in tandem with the predisposing factors. This review will summarize the pathophysiology of IBS and the role of gut microbiota in relation to IBS. Current methodologies for microbiome studies in IBS such as genome sequencing, metagenomics, culturomics and animal models will be discussed. The myriad of therapy options such as immunoglobulins (immune-based therapy), probiotics and prebiotics, dietary modifications including FODMAP restriction diet and gluten-free diet, as well as fecal transplantation will be reviewed. Finally this review will highlight future directions in IBS therapy research, including identification of new molecular targets, application of 3-D gut model, gut-on-a-chip and personalized therapy.
  9. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP
    Int J Mol Sci, 2014;15(8):14848-67.
    PMID: 25153636 DOI: 10.3390/ijms150814848
    Different murine species differ in their susceptibility to systemic infection with Candida albicans, giving rise to varied host immune responses, and this is compounded by variations in virulence of the different yeast strains used. Hence, this study was aimed at elucidating the pathogenesis of a clinical C. albicans isolate (HVS6360) in a murine intravenous challenge model by examining the different parameters which included the counts of red blood cells and associated components as well as the organ-specific expression profiles of cytokines and chemokines. Kidneys and brains of infected mice have higher fungal recovery rates as compared to other organs and there were extensive yeast infiltration with moderate to severe inflammation seen in kidney and brain tissues. Red blood cells (RBCs) and haemoglobin (Hb) counts were reduced throughout the infection period. Pattern recognition receptors (PRRs), chemokines and cytokine transcription profiles were varied among the different organs (kidney, spleen and brain) over 72 h post infections. Transcription of most of the PRRs, cytokines and chemokines were suppressed at 72 h post infection in spleen while continuous expression of PRRs, cytokines and chemokines genes were seen in brain and kidney. Reduction in red blood cells and haemoglobin counts might be associated with the action of extracellular haemolysin enzyme and haeme oxygenase of C. albicans in conjunction with iron scavenging for the fungal growth. Renal cells responsible for erythropoietin production may be injured by the infection and hence the combined effect of haemolysis plus lack of erythropoietin-induced RBC replenishment leads to aggravated reduction in RBC numbers. The varied local host immune profiles among target organs during systemic C. albicans infection could be of importance for future work in designing targeted immunotherapy through immunomodulatory approaches.
  10. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP
    Biomed Rep, 2014 Nov;2(6):869-874.
    PMID: 25279161
    Local cytokine production is a significant indicator for disease pathogenesis or progression. Previous studies on cytokine production during systemic Candida albicans (C. albicans) infection were solely on kidney or single cell type interaction with C. albicans. Therefore, the present study aimed to assess the early cytokine expression of various target organs (kidney, spleen and brain) over a 72-h time course during systemic C. albicans infection. The local cytokine profiles of the target organs during systemic C. albicans infection were measured by cytometric bead array and ELISA analysis. The results demonstrated that interleukin-6 (IL-6) and IL-2 were statistically significant (P<0.05) in the spleen at 24 and 72 h post-infection, whereas in the kidney, IL-6 and tumor necrosis factor-α (TNF-α) were statistically significant (P<0.05) at 24 and 72 h post-infection and CXCL-1 and transforming growth factor-β (TGF-β) were statistically significant (P<0.05) at 72 h post-infection. In the brain, IL-6 and TNF-α were statistically significant (P<0.05) at 24 and 72 h post-infection, whereas TGF-β was statistically significant (P<0.05) at 72 h post-infection. These findings demonstrate that host immune responses were varied among target organs during systemic C. albicans infection. This could be important for designing targeted immunotherapy against this pathogen through immunomodulatory approaches in future exploratory research.
  11. Chin VK, Yong VC, Chong PP, Amin Nordin S, Basir R, Abdullah M
    Mediators Inflamm, 2020;2020:9560684.
    PMID: 32322167 DOI: 10.1155/2020/9560684
    Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.
  12. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP, et al.
    Trop Biomed, 2013 Dec;30(4):654-62.
    PMID: 24522136 MyJurnal
    This study was aimed at determining the phospholipase and haemolysin activity of Candida isolates in Malaysia. A total of 37 Candida clinical isolates representing seven species, Candida albicans (12), Candida tropicalis (8), Candida glabrata (4), Candida parapsilosis (1), Candida krusei (4), Candida orthopsilosis (1) and Candida rugosa (7) were tested. In vitro phospholipase activity was determined by using egg yolk plate assay whereas in vitro haemolysin activity was tested by using blood plate assay on sheep blood Sabouraud's dextrose agar (SDA) enriched with glucose. Phospholipase activity was detected in 75% (9 out of 12) of the C. albicans isolates. Among the 25 non- C. albicans Candida isolates, phospholipase activity was detected in only 24% of these isolates. The phospholipase activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.002). Haemolysin activity was detected in 100% of the C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, and C. orthopsilosis isolates while 75% of the C. krusei isolates and 12.3% of the C. rugosa isolates showed haemolysin activity. The haemolytic activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.0001).The findings in this study indicate that C. albicans isolates in Malaysia may possess greater virulence potential than the non-albicans species.
  13. Chin VK, Lee TY, Rusliza B, Chong PP
    Int J Mol Sci, 2016 Oct 18;17(10).
    PMID: 27763544
    Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida-host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future.
  14. Chin VK, Asyran AMY, Zakaria ZA, Abdullah WO, Chong PP, Nordin N, et al.
    J Parasit Dis, 2019 Mar;43(1):139-153.
    PMID: 30956457 DOI: 10.1007/s12639-018-1070-3
    Triggering receptor expressed on myeloid cells 1 (TREM-1) is a potential molecular therapeutic target for various inflammatory diseases. Despite that, the role of TREM-1 during malaria pathogenesis remains obscure with present literature suggesting a link between TREM-1 with severe malaria development. Therefore, this study aims to investigate the role of TREM-1 and TREM-1 related drugs during severe malaria infection in Plasmodium berghei-infected mice model. Our findings revealed that TREM-1 concentration was significantly increased throughout the infection periods and TREM-1 was positively correlated with malaria parasitemia development. This suggests a positive involvement of TREM-1 in severe malaria development. Meanwhile, blocking of TREM-1 activation using rmTREM-1/Fc and TREM-1 clearance by mTREM-1/Ab had significantly reduced malaria parasitemia and suppressed the production of pro- inflammatory cytokines (TNF-α, IL-6 and IFN-γ) and anti-inflammatory cytokine (IL-10). Furthermore, histopathological analysis of TREM-1 related drug treatments, in particular rmTREM-1/Fc showed significant improvements in the histological conditions of major organs (kidneys, spleen, lungs, liver and brain) of Plasmodium berghei-infected mice. This study showed that modulation of TREM-1 released during malaria infection produces a positive outcome on malaria infection through inhibition of pro-inflammatory cytokines secretion and alleviation of histopathological conditions of affected organs. Nevertheless, further investigation on its optimal dosage and dose dependant study should be carried out to maximise its full potential as immunomodulatory or as an adjuvant in line with current antimalarial agents.
  15. Chew FLM, Subrayan V, Chong PP, Goh MC, Ng KP
    Jpn. J. Ophthalmol., 2009 Nov;53(6):657-659.
    PMID: 20020251 DOI: 10.1007/s10384-009-0722-3
  16. Ban EZ, Lye MS, Chong PP, Yap YY, Lim SYC, Abdul Rahman H
    PLoS One, 2018;13(6):e0198332.
    PMID: 29912899 DOI: 10.1371/journal.pone.0198332
    BACKGROUND: Nasopharyngeal carcinoma is a rare form of cancer across the world except in certain areas such as Southern China, Hong Kong and Malaysia. NPC is considered a relatively radiosensitive tumor and patients diagnosed at early stages tend to survive longer compared to those with advanced disease. Given that early symptoms of NPC are non-specific and that the nasopharynx is relatively inaccessible, less invasive screening methods such as biomarker screening might be the key to improve NPC survival and management. A number of genes with their respective polymorphisms have been shown in past studies to be associated with survival of various cancers. hOGG1 and XPD genes encode for a DNA glycosylase and a DNA helicase respectively; both are proteins that are involved in DNA repair. ITGA2 is the alpha subunit of the transmembrane receptor integrin and is mainly responsible for cell-cell and cell-extracellular matrix interaction. TNF-α is a cytokine that is released by immune cells during inflammation.

    METHODS: Restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) was used to genotype all the aforementioned gene polymorphisms. Kaplan-Meier survival function, log-rank test and Cox regression were used to investigate the effect of gene polymorphisms on the all-cause survival of NPC.

    RESULTS: NPC cases carrying T/T genotype of ITGA2 C807T have poorer all-cause survival compared to those with C/C genotypes, with an adjusted HR of 2.06 (95% CI = 1.14-3.72) in individual model. The 5-year survival rate of C/C carriers was 55% compared to those with C/T and T/T where the survival rates were 50% and 43%, respectively.

    CONCLUSION: The finding from the present study showed that ITGA2 C807T polymorphism could be potentially useful as a prognostic biomarker for NPC. However, the prognostic value of ITGA2 C807T polymorphism has to be validated by well-designed further studies with larger patient numbers.

  17. Ban EZ, Lye MS, Chong PP, Yap YY, Lim SYC, Abdul Rahman H
    PLoS One, 2017;12(11):e0187200.
    PMID: 29121049 DOI: 10.1371/journal.pone.0187200
    BACKGROUND: 8-oxoG, a common DNA lesion resulting from reactive oxygen species (ROS), has been shown to be associated with cancer initiation. hOGG1 DNA glycosylase is the primary enzyme responsible for excision of 8-oxoG through base excision repair (BER). Integrins are members of a family of cell surface receptors that mediate the cell-cell and extracellular matrix (ECM) interactions. Integrins are involved in almost every aspect of carcinogenesis, from cell differentiation, cell proliferation, metastasis to angiogenesis. Loss of ITGA2 expression was associated with enhanced tumor intravasation and metastasis of breast and colon cancer. XPD gene encodes DNA helicase enzyme that is involved in nucleotide excision repair (NER). It is shown in previous research that XPD homozygous wildtype Lys/Lys genotype was associated with higher odds of NPC.

    METHODS: We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC) cases and 533 controls matched by age, gender and ethnicity to investigate the effect of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Linkage disequilibrium and haplotype analysis were conducted to explore the association of allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR) was used for DNA genotyping.

    RESULTS: No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06-2.43). Subjects with history of smoking (OR = 1.81, 95% CI = 1.26-2.60), and salted fish consumption before age of 10 (OR = 1.77, 95% CI = 1.30-2.42) were observed to have increased odds of NPC. The odds of developing NPC of CGC haplotype was significantly higher compared to reference AGC haplotype (OR = 2.20, 95% CI = 1.06-4.58).

    CONCLUSION: The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC.

  18. Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP
    J Plant Physiol, 2011 Jul 01;168(10):1106-13.
    PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007
    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
  19. Albujja MH, Messaudi SA, Vasudevan R, Al Ghamdi S, Chong PP, Ghani KA, et al.
    Asian Pac J Cancer Prev, 2020 08 01;21(8):2271-2280.
    PMID: 32856855 DOI: 10.31557/APJCP.2020.21.8.2271
    BACKGROUND: The X-chromosome has been suggested to play a role in prostate cancer (PrCa) since epidemiological studies have provided evidence for an X-linked mode of inheritance for PrCa based on the higher relative risk among men who report an affected brother(s) as compared to those reporting an affected father. The aim of this study was to examine the potential association between the forensic STR markers located at four regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28 and the risk of BPH and PrCa to confirm the impact of ChrX in the PrCa incidence. This may be helpful in the incorporation of STRs genetic variation in the early detection of men population at risk of developing PrCa.

    METHODS: DNA samples from 92 patients and 156 healthy controls collected from two medical centers in Riyadh, Saudi Arabia were analyzed for four regions located at X-chromosome using the Investigator® Argus X-12 QS Kit.

    RESULTS: The results demonstrated that microvariant alleles of (DXS7132, DXS10146, HPRTB, DXS10134, and DXS10135) are overrepresented in the BPH group (p < 0.00001). Allele 28 of DXS10135 and allele 15 of DXS7423 could have a protective effect, OR 0.229 (95%CI, 0.066-0.79); and OR 0.439 (95%CI, 0.208-0.925). On the other hand, patients carrying allele 23 of DXS10079 and allele 26 of DXS10148 presented an increased risk to PrCa OR 4.714 (95%CI, 3.604-6.166).

    CONCLUSION: The results are in concordance with the involvement of the X chromosome in PrCa and BPH development. STR allele studies may add further information from the definition of a genetic profile of PrCa resistance or susceptibility. As TBL1, AR, LDOC1, and RPL10 genes are located at regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28, respectively, these genes could play an essential role in PrCa or BPH.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links