Affiliations 

  • 1 National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address: panpanchong@ummc.edu.my
  • 2 National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 3 Mahkota Medical Centre, No 3, Mahkota Melaka, Jalan Merdeka, 75000 Melaka, Malaysia
  • 4 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
  • 5 National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address: tkzrea@ummc.edu.my
Clin Biomech (Bristol, Avon), 2020 10;79:105178.
PMID: 32988676 DOI: 10.1016/j.clinbiomech.2020.105178

Abstract

BACKGROUND: Cartilage damage, which can potentially lead to osteoarthritis, is a leading cause of morbidity in the elderly population. Chondrocytes are sensitive to mechanical stimuli and their matrix-protein synthesis may be altered when chondrocytes experience a variety of in vivo loadings. Therefore, a study was conducted to evaluate the biosynthesis of isolated osteoarthritic chondrocytes which subjected to compression with varying dynamic compressive strains and loading durations.

METHODS: The proximal tibia was resected as a single osteochondral unit during total knee replacement from patients (N = 10). The osteoarthritic chondrocytes were isolated from the osteochondral units, and characterized using reverse transcriptase-polymerase chain reaction. The isolated osteoarthritic chondrocytes were cultured and embedded in agarose, and then subjected to 10% and 20% uniaxial dynamic compression up to 8-days using a bioreactor. The morphological features and changes in the osteoarthritic chondrocytes upon compression were evaluated using scanning electron microscopy. Safranin O was used to detect the presence of cartilage matrix proteoglycan expression while quantitative analysis was conducted by measuring type VI collagen using an immunohistochemistry and fluorescence intensity assay.

FINDINGS: Gene expression analysis indicated that the isolated osteoarthritic chondrocytes expressed chondrocyte-specific markers, including BGN, CD90 and HSPG-2. Moreover, the compressed osteoarthritic chondrocytes showed a more intense and broader deposition of proteoglycan and type VI collagen than control. The expression of type VI collagen was directly proportional to the duration of compression in which 8-days compression was significantly higher than 4-days compression. The 20% compression showed significantly higher intensity compared to 10% compression in 4- and 8-days.

INTERPRETATION: The biosynthetic activity of human chondrocytes from osteoarthritic joints can be enhanced using selected compression regimes.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications