Displaying publications 61 - 68 of 68 in total

Abstract:
Sort:
  1. Wong YH, Muhamad H, Abas F, Lai OM, Nyam KL, Tan CP
    Food Chem, 2017 Mar 15;219:126-130.
    PMID: 27765207 DOI: 10.1016/j.foodchem.2016.09.130
    The effects of frying duration, frying temperature and concentration of sodium chloride on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GEs) of refined, bleached and deodorized (RBD) palm olein during deep-fat frying (at 160°C and 180°C) of potato chips (0%, 1%, 3% and 5% NaCl) for 100min/d for five consecutive days in eight systems were compared in this study. All oil samples collected after each frying cycle were analyzed for 3-MCPD esters, GEs, free fatty acid (FFA) contents, specific extinction at 232 and 268 nm (K232 and K268), p-anisidine value (pAV), and fatty acid composition. The 3-MCPD ester trend was decreasing when the frying duration increased, whereas the trend was increasing when frying temperature and concentration of NaCl increased. The GEs trend was increasing when the frying temperature, frying duration and concentration of NaCl increased. All of the oil qualities were within the safety limit.
  2. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
  3. Wu Y, Wang K, Liu Q, Liu X, Mou B, Lai OM, et al.
    Food Chem, 2022 Jan 15;367:130700.
    PMID: 34352694 DOI: 10.1016/j.foodchem.2021.130700
    Present study prepared curcumin-loaded nanoliposomes using bovine milk, krill phospholipids and cholesterol; and investigated the effects of cholesterol on membrane characteristics, storage stability and antibacterial properties of the curcumin nanoliposomes. Bovine milk phospholipids which have higher saturation than krill phospholipids resulted in formation of curcumin-loaded nanoliposomes with higher encapsulation efficiency (84.78%), larger absolute value of zeta potential and vesicle size (size: 159.15 ± 5.27 nm, zeta potential: -28.3 ± 0.62 mV). Cholesterol helps to formation of a more hydrophobic, compact and tighter bilayer membrane structure which improved the storage stability of nanoliposomes under alkaline (66.25 ± 0.46%), heat (43.25 ± 0.69%) and sunlight (49.44 ± 1.78%) conditions. In addition, curcumin-loaded nanoliposomes can effectively target infectious bacteria which secrete pore-forming toxins such as Staphylococcus aureus by causing the bacterial cell wall to lysis. Findings from present work can guide future development of novel antibacterial agents for use in food preservation.
  4. Yang J, Qiu C, Li G, Lee WJ, Tan CP, Lai OM, et al.
    Food Chem, 2020 Oct 15;327:127014.
    PMID: 32434126 DOI: 10.1016/j.foodchem.2020.127014
    The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.
  5. Yap JW, Lee YY, Tang TK, Chong LC, Kuan CH, Lai OM, et al.
    Crit Rev Food Sci Nutr, 2023;63(21):5231-5246.
    PMID: 34913758 DOI: 10.1080/10408398.2021.2015681
    Insect-based food or ingredients have received tremendous attention worldwide because of their potential to ensure food and nutrition security, mitigating the reliance on land-dependent agricultural products. Indeed, insect-farming has low environmental impacts with reduced land, water and energy input. More importantly, insects are rich in high quality proteins and fats. They are also excellent sources of minerals, vitamins and bioactive compounds. Insect-based lipids are intriguing because they may contain high levels of unsaturated fatty acids particularly linoleic and α-linolenic acids. Besides, the insect-based lipids also show a considerable amount of bioactive components such as tocols, sterols and carotenoids. However, their fatty acid compositions and the nutritional values may vary depending on species, feed composition, developmental stage, geographical locations, and extraction techniques. Therefore, the present article aims to provide a comprehensive review on the fatty acid composition, the minor bioactive constituents and the physicochemical properties of fats and oils derived from insects of different orders (Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, Hemiptera and Diptera). The various parameters affecting the nutritional compositions of the insect-based lipids will also be highlighted. These information will definitely provide a detailed insight on the potential applications of these fats in various food systems based on their unique properties.
  6. Yeo BH, Tang TK, Wong SF, Tan CP, Wang Y, Cheong LZ, et al.
    Front Pharmacol, 2021;12:631136.
    PMID: 33833681 DOI: 10.3389/fphar.2021.631136
    Edible bird's nest (EBN) is recognized as a nourishing food among Chinese people. The efficacy of EBN was stated in the records of traditional Chinese medicine and its activities have been reported in many researches. Malaysia is the second largest exporter of EBNs in the world, after Indonesia. For many years, EBN trade to China was not regulated until August 2011, when a safety alert was triggered for the consumption of EBNs. China banned the import of EBNs from Malaysia and Indonesia due to high level of nitrite. Since then, the Malaysia government has formulated Malaysia Standards for swiftlet farming (MS 2273:2012), edible bird's nest processing plant design and management (MS 2333:2010), and edible bird's nest product quality (MS 2334:2011) to enable the industry to meet the specified standards for the export to China. On the other hand, Indonesia's EBN industry formulated a standard operating procedure (SOP) for exportation to China. Both countries can export EBNs to China by complying with the standards and SOPs. EBN contaminants may include but not limited to nitrite, heavy metals, excessive minerals, fungi, bacteria, and mites. The possible source of contaminants may come from the swiftlet farms and the swiftlets or introduced during processing, storage, and transportation of EBNs, or adulterants. Swiftlet house design and management, and EBN processing affect the bird's nest color. Degradation of its optical quality has an impact on the selling price, and color changes are tied together with nitrite level. In this review, the current and future prospects of EBNs in Malaysia and Indonesia in terms of their quality, and the research on the contaminants and their effects on EBN color changes are discussed.
  7. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
  8. Zulkurnain M, Lai OM, Tan SC, Abdul Latip R, Tan CP
    J Agric Food Chem, 2013 Apr 3;61(13):3341-9.
    PMID: 23464796 DOI: 10.1021/jf4009185
    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links