AREAS COVERED: The present article will review the diseases associated with IPI and discuss the current IPI control strategies such as the water, sanitation, and hygiene (WASH) interventions, community-led total sanitation (CLTS) approach, and regular anthelminthic treatments. For the first time, this review will also evaluate all currently practised diagnostic techniques for the detection of intestinal parasites and provide insights on future IPI control strategies.
EXPERT OPINION: Advanced and improved diagnostic methods such as qPCR coupled with a high-resolution melting curve, aptamers, biosensors, and detection of extracellular vesicles can be used for detection of IPI. Vaccination against intestinal parasites can be made available to increase antibodies to interfere with the blood-feeding process by the parasites, which subsequently reduces the reproductive rates of the parasites. These methods collectively can serve as future management strategies for intestinal parasitic infections.
PURPOSE: The purpose of this study was to develop and validate a novel instrument, termed the questionnaire on perceived prosthodontic treatment needs (PPTN), that assesses perceived prosthodontic treatment needs in adults.
MATERIAL AND METHODS: The PPTN was developed following a literature review, consultation with healthcare workers, and patient interviews. It included 15 questions and a self-rated need for prosthodontic treatment, categorized on a Likert scale. A cross-sectional descriptive study was completed on 193 dental patients seeking or receiving prosthodontic treatment.
RESULTS: Three perceived prosthodontic treatment need factors were identified (psychosocial impact, esthetic concern, and function) by using exploratory factor analysis. A higher PPTN score indicated greater perceived prosthodontic treatment needs. The identified factors represent 67.8% of the variance with eigenvalues of >1. The PPTN had a high degree of internal consistency and reliability, as the final questionnaire received a Cronbach alpha of 0.75 and an intraclass coefficient of 0.75 with a 95% confidence interval of 0.68 to 0.80 (F(192, 576)=3.94, P
METHODS AND RESULTS: Extracts were obtained via sequential solvent extraction method using hexane, dichloromethane, ethyl acetate, methanol and water. Antimicrobial activity testing was done using broth microdilution assay against 17 strains of bacteria. The leaf hexane extract of E. coccinea and rhizome hexane extract of E. sessilanthera showed best antimicrobial activities, with minimum inhibitory concentration (MIC) values ranging from 0·016 to 1 mg ml-1 against Gram-positive bacteria. From these active extracts, two antimicrobials were isolated and identified as trans-2-dodecenal and 8(17),12-labdadiene-15,16-dial with MIC values ranging from 4 to 8 μg ml-1 against Bacillus cereus, Bacillus subtilis and Staphylococcus aureus.
CONCLUSION: Etlingera coccinea and E. sessilanthera demonstrated good antimicrobial activities against clinically relevant bacteria strains. The antimicrobial compounds isolated showed low MIC values, hence suggesting their potential use as antimicrobial agents.
SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to identify the potent antimicrobials from these gingers. The antimicrobials isolated could potentially be developed further for use in treatment of bacterial infections. Also, this study warrants further research into other Etlingera species in search for more antimicrobial compounds.
METHODS AND RESULTS: The crude extracts of E. pubescens were obtained through methanol extraction, and evaluated for antimicrobial activities. From this extract, 1,7-bis(3,4-dihydroxyphenyl)heptan-3-yl acetate (etlingerin) was isolated. When compared to curcumin (a compound with a similar chemical structure), etlingerin showed twofold lower minimum inhibitory concentration values while also being bactericidal. Through time kill assay, etlingerin showed rapid killing effects (as fast as 60 min) against the Gram-positive bacteria (Staphylococcus aureus ATCC 43300 and Bacillus subtilis ATCC 8188). Further assessment revealed that etlingerin caused leakage of intracellular materials, therefore suggesting alteration in membrane permeability as its antimicrobial mechanism. Cytotoxicity study demonstrated that etlingerin exhibited approximately 5- to 12-fold higher IC50 values against several cell lines, as compared to curcumin.
CONCLUSIONS: Etlingerin isolated from E. pubescens showed better antibacterial and cytotoxic activities when compared to curcumin. Etlingerin could be safe for human use, though further cytotoxicity study using animal models is needed.
SIGNIFICANCE AND IMPACT OF THE STUDY: Etlingerin has a potential to be used in treating bacterial infections due to its good antimicrobial activity, while having potentially low cytotoxicity.