Displaying publications 61 - 80 of 128 in total

Abstract:
Sort:
  1. Wang J, Shao Y, Ma Y, Zhang D, Aziz SB, Li Z, et al.
    ACS Nano, 2024 Apr 09;18(14):10230-10242.
    PMID: 38546180 DOI: 10.1021/acsnano.4c00599
    The realization of sodium-ion devices with high-power density and long-cycle capability is challenging due to the difficulties of carrier diffusion and electrode fragmentation in transition metal selenide anodes. Herein, a Mo/W-based metal-organic framework is constructed by a one-step method through rational selection, after which MoWSe/C heterostructures with large angles are synthesized by a facile selenization/carbonization strategy. Through physical characterization and theoretical calculations, the synthesized MoWSe/C electrode delivers obvious structural advantages and excellent electrochemical performance in an ethylene glycol dimethyl ether electrolyte. Furthermore, the electrochemical vehicle mechanism of ions in the electrolyte is systematically revealed through comparative analyses. Resultantly, ether-based electrolytes advantageously construct stable solid electrolyte interfaces and avoid electrolyte decomposition. Based on the above benefits, the Na half-cell assembled with MoWSe/C electrodes demonstrated excellent rate capability and a high specific capacity of 347.3 mA h g-1 even after cycling 2000 cycles at 10 A g-1. Meanwhile, the constructed sodium-ion capacitor maintains ∼80% capacity retention after 11,000 ultralong cycles at a high-power density of 3800 W kg-1. The findings can broaden the mechanistic understanding of conversion anodes in different electrolytes and provide a reference for the structural design of anodes with high capacity, fast kinetics, and long-cycle stability.
  2. Yao L, Xia Z, Tang P, Deng J, Hao E, Du Z, et al.
    J Ethnopharmacol, 2024 Jun 28;334:118507.
    PMID: 38945467 DOI: 10.1016/j.jep.2024.118507
    ETHNOPHARMACOLOGICAL RELEVANCE: Lablab Semen Album (lablab), the white and dried mature fruit of Lablab purpureus in the Lablab genus of the Fabaceae family, is a renowned traditional medicinal herb with a long history of use in China. In Chinese medicine, lablab is often combined with other drugs to treat conditions such as weak spleen and stomach, loss of appetite, loose stools, excessive leucorrhoea, summer dampness and diarrhea, chest tightness, and abdominal distension.

    MATERIALS AND METHODS: Comprehensive information on lablab was gathered from databases including Web of Science, Science Direct, Google Scholar, Springer, PubMed, CNKI, Wanfang, and ancient materia medica.

    RESULTS: Lablab, a member of the lentil family, thrives in warm and humid climates, and is distributed across tropical and subtropical regions worldwide. Traditionally, lablab is used to treat various ailments, such as spleen and stomach weakness, loss of appetite, and diarrhea. Phytochemical analyses reveal that lablab is a rich source of triterpenoid saponins, glucosides, volatile components, polysaccharides, and amino acids. Lablab extracts exhibit diverse biological activities, including hypolipidemic, hypoglycemic, immunomodulatory, antioxidant, hepatoprotective, antitumoral, antiviral properties, and more. Besides its medicinal applications, lablab is extensively used in the food industry due to its high nutrient content. Additionally, the quality of lablab can be regulated by determining the levels of key chemical components pivotal to its medicinal effects, ensuring the herb's overall quality.

    CONCLUSION: Lablab is a promising medicinal and edible plant ingredient with diverse pharmacological effects, making it a valuable ingredient for food, pharmaceuticals, and animal husbandry. However, it has inherent toxicity if not properly prepared. Additionally, some traditional uses and pharmacological activities lack scientific validation due to incomplete methods, unclear results, and insufficient clinical data. Thus, further in vivo and in vitro studies on its pharmacology, pharmacokinetics, and toxicology, along with clinical efficacy evaluations, are needed to ensure lablab's safety and effectiveness. As an important traditional Chinese medicine, lablab deserves more attention.

  3. Jr VMB, Luo J, Li Z, Gidley MJ, Bird AR, Tetlow IJ, et al.
    Front Genet, 2020;11:289.
    PMID: 32300357 DOI: 10.3389/fgene.2020.00289
    The enzyme starch synthase IIa (SSIIa) in cereals has catalytic and regulatory roles during the synthesis of amylopectin that influences the functional properties of the grain. Rice endosperm SSIIa is more active in indica accessions compared to japonica lines due to functional SNP variations in the coding region of the structural gene. In this study, downregulating the expression of japonica-type SSIIa in Nipponbare endosperm resulted in either shrunken or opaque grains with an elevated proportion of A-type starch granules. Shrunken seeds had severely reduced starch content and could not be maintained in succeeding generations. In comparison, the opaque grain morphology was the result of weaker down-regulation of SSIIa which led to an elevated proportion of short-chain amylopectin (DP 6-12) and a concomitant reduction in the proportion of medium-chain amylopectin (DP 13-36). The peak gelatinization temperature of starch and the estimated glycemic score of cooked grain as measured by the starch hydrolysis index were significantly reduced. These results highlight the important role of medium-chain amylopectin in influencing the functional properties of rice grains, including its digestibility. The structural, regulatory and nutritional implications of down-regulated japonica-type SSIIa in rice endosperm are discussed.
  4. Wang S, Qiao Z, Li Z, Zhang Y, Cheng A, Zhu B, et al.
    Soft Robot, 2024 Jul 30.
    PMID: 39078729 DOI: 10.1089/soro.2023.0212
    Soft actuators offer numerous potential applications; however, challenges persist in achieving a high driving force and fast response speed. In this work, we present the design, fabrication, and analysis of a soft pneumatic bistable actuator (PBA) mimicking jellyfish subumbrellar muscle motion for waterjet propulsion. Drawing inspiration from the jellyfish jet propulsion and the characteristics of bistable structure, we develop an elastic band stretch prebending PBA with a simple structure, low inflation cost, exceptional driving performance, and stable driving force output. Through a bionic analysis of jellyfish body structure and motion, we integrate the PBA into a jellyfish-like prototype, enabling it to achieve jet propulsion. To enhance the swimming performance, we introduce a skin-like structure for connecting the soft actuator to the jellyfish-like soft robot prototype. This skin-like structure optimizes the fluid dynamics during jet propulsion, resulting in improved efficiency and maneuverability. Our study further analyzes the swimming performance of the jellyfish-like prototype, demonstrating a swimming speed of 3.8 cm/s (0.32 body length/s, BL/s) for the tethered prototype and 4.7 cm/s (0.38 BL/s) for the untethered prototype. Moreover, we showcase the jellyfish-like prototype's notable load-bearing capacity and fast-forward swimming performance compared to other driving methods for underwater biomimetic robots. This work provides valuable insights for the development of highly agile and fast responsive soft robots that imitate the subumbrellar muscle of jellyfish for efficient water-jet propulsion, utilizing skin-like structures to enhance swimming performance.
  5. Xu S, Lan H, Teng Q, Li X, Jin Z, Qu Y, et al.
    Int J Biol Macromol, 2023 Aug 12;251:126286.
    PMID: 37579904 DOI: 10.1016/j.ijbiomac.2023.126286
    H7 avian influenza virus has caused multiple human infections and poses a severe public health threat. In response to the highly variable nature of AIVs, a novel, easily regenerated DNA vaccine has great potential in treating or preventing avian influenza pandemics. Nevertheless, DNA vaccines have many disadvantages, such as weak immunogenicity and poor in vivo delivery. To further characterize and solve these issues and develop a novel H7 AIV DNA vaccine with enhanced stability and immunogenicity, we constructed nine AIV DNA plasmids, and the immunogenicity screened showed that mice immunized with pβH7N2SH9 elicited stronger hemagglutination-inhibiting (HI) antibodies than other eight plasmid DNAs. Then, to address the susceptibility to degradation and low transfection rate of DNA vaccine in vivo, we developed pβH7N2SH9/DGL NPs by encapsulating the pβH7N2SH9 within the dendrigraft poly-l-lysines nanoparticles. As expected, these NPs exhibited excellent physical and chemical properties, were capable of promote lymphocyte proliferation, and induce stronger humoral and cellular responses than the naked pβH7N2SH9, including higher levels of HI antibodies than naked pβH7N2SH9, as well as the production of cytokines, namely, IL-2, IFN-α. Taken together, our results suggest that the construction of an immune-enhanced H7-AIV DNA nanovaccine may be a promising strategy against most influenza viruses.
  6. Zhang JB, Dai C, Wang Z, You X, Duan Y, Lai X, et al.
    Water Res, 2023 Oct 01;244:120555.
    PMID: 37666149 DOI: 10.1016/j.watres.2023.120555
    Herein, biochar was prepared using rice straw, and it served as the peroxymonosulfate (PMS) activator to degrade naphthalene (NAP). The results showed that pyrolysis temperature has played an important role in regulating biochar structure and properties. The biochar prepared at 900°C (BC900) had the best activation capacity and could remove NAP in a wide range of initial pH (5-11). In the system of BC900/PMS, multi-reactive species were produced, in which 1O2 and electron transfer mainly contributed to NAP degradation. In addition, the interference of complex groundwater components on the NAP removal rate must get attention. Cl- had a significant promotional effect but risked the formation of chlorinated disinfection by-products. HCO3-, CO32-, and humic acid (HA) had an inhibitory effect; surfactants had compatibility problems with the BC900/PMS system, which could lead to unproductive consumption of PMS. Significantly, the BC900/PMS system showed satisfactory remediation performance in spiked natural groundwater and soil, and it could solve the problem of persistent groundwater contamination caused by NAP desorption from the soil. Besides, the degradation pathway of NAP was proposed, and the BC900/PMS system could degrade NAP into low or nontoxic products. These suggest that the BC900/PMS system has promising applications in in-situ groundwater remediation.
  7. Kang J, Peng R, Feng J, Wei J, Li Z, Huang F, et al.
    BMJ Open, 2023 Sep 06;13(9):e075030.
    PMID: 37673450 DOI: 10.1136/bmjopen-2023-075030
    OBJECTIVE: To evaluate the health systems efficiency in China and Association of Southeast Asian Nations (ASEAN) countries from 2015 to 2020.

    DESIGN: Health efficiency analysis using data envelopment analysis (DEA) and stochastic frontier approach analysis.

    SETTING: Health systems in China and ASEAN countries.

    METHODS: DEA-Malmquist model and SFA model were used to analyse the health system efficiency among China and ASEAN countries, and the Tobit regression model was employed to analyse the factors affecting the efficiency of health system among these countries.

    RESULTS: In 2020, the average technical efficiency, pure technical efficiency and scale efficiency of China and 10 ASEAN countries' health systems were 0.700, 1 and 0.701, respectively. The average total factor productivity (TFP) index of the health systems in 11 countries from 2015 to 2020 was 0.962, with a decrease of 1.4%, among which the average technical efficiency index was 1.016, and the average technical progress efficiency index was 0.947. In the past 6 years, the TFP index of the health system in Malaysia was higher than 1, while the TFP index of other countries was lower than 1. The cost efficiency among China and ASEAN countries was relatively high and stable. The per capita gross domestic product (current US$) and the urban population have significant effects on the efficiency of health systems.

    CONCLUSIONS: Health systems inefficiency is existing in China and the majority ASEAN countries. However, the lower/middle-income countries outperformed high-income countries. Technical efficiency is the key to improve the TFP of health systems. It is suggested that China and ASEAN countries should enhance scale efficiency, accelerate technological progress and strengthen regional health cooperation according to their respective situations.

  8. Li Z, Zhang F, Shi J, Chan NW, Tan ML, Kung HT, et al.
    Mar Pollut Bull, 2023 Nov;196:115653.
    PMID: 37879130 DOI: 10.1016/j.marpolbul.2023.115653
    Chromophoric dissolved organic matter (CDOM) occupies a critical part in biogeochemistry and energy flux of aquatic ecosystems. CDOM research spans in many fields, including chemistry, marine environment, biomass cycling, physics, hydrology, and climate change. In recent years, a series of remarkable research milestone have been achieved. On the basis of reviewing the research process of CDOM, combined with a bibliometric analysis, this study aims to provide a comprehensive review of the development and applications of remote sensing in monitoring CDOM from 2003 to 2022. The findings show that remote sensing data plays an important role in CDOM research as proven with the increasing number of publications since 2003, particularly in China and the United States. Primary research areas have gradually changed from studying absorption and fluorescence properties to optimization of remote sensing inversion models in recent years. Since the composition of oceanic and freshwater bodies differs significantly, it is important to choose the appropriate inversion method for different types of water body. At present, the monitoring of CDOM mainly relies on a single sensor, but the fusion of images from different sensors can be considered a major research direction due to the complex characteristics of CDOM. Therefore, in the future, the characteristics of CDOM will be studied in depth inn combination with multi-source data and other application models, where inversion algorithms will be optimized, inversion algorithms with low dependence on measured data will be developed, and a transportable inversion model will be built to break the regional limitations of the model and to promote the development of CDOM research in a deeper and more comprehensive direction.
  9. Janib SM, Gustafson JA, Minea RO, Swenson SD, Liu S, Pastuszka MK, et al.
    Biomacromolecules, 2014 Jul 14;15(7):2347-58.
    PMID: 24871936 DOI: 10.1021/bm401622y
    Recombinant protein therapeutics have increased in number and frequency since the introduction of human insulin, 25 years ago. Presently, proteins and peptides are commonly used in the clinic. However, the incorporation of peptides into clinically approved nanomedicines has been limited. Reasons for this include the challenges of decorating pharmaceutical-grade nanoparticles with proteins by a process that is robust, scalable, and cost-effective. As an alternative to covalent bioconjugation between a protein and nanoparticle, we report that biologically active proteins may themselves mediate the formation of small multimers through steric stabilization by large protein polymers. Unlike multistep purification and bioconjugation, this approach is completed during biosynthesis. As proof-of-principle, the disintegrin protein called vicrostatin (VCN) was fused to an elastin-like polypeptide (A192). A significant fraction of fusion proteins self-assembled into multimers with a hydrodynamic radius of 15.9 nm. The A192-VCN fusion proteins compete specifically for cell-surface integrins on human umbilical vein endothelial cells (HUVECs) and two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Confocal microscopy revealed that, unlike linear RGD-containing protein polymers, the disintegrin fusion protein undergoes rapid cellular internalization. To explore their potential clinical applications, fusion proteins were characterized using small animal positron emission tomography (microPET). Passive tumor accumulation was observed for control protein polymers; however, the tumor accumulation of A192-VCN was saturable, which is consistent with integrin-mediated binding. The fusion of a protein polymer and disintegrin results in a higher intratumoral contrast compared to free VCN or A192 alone. Given the diversity of disintegrin proteins with specificity for various cell-surface integrins, disintegrin fusions are a new source of biomaterials with potential diagnostic and therapeutic applications.
  10. Wang Z, Li P, Ma K, Chen Y, Yan Z, Penfold J, et al.
    J Colloid Interface Sci, 2021 Mar 15;586:876-890.
    PMID: 33309145 DOI: 10.1016/j.jcis.2020.10.122
    HYPOTHESIS: The α-sulfo alkyl ester, AES, surfactants are a class of anionic surfactants which have potential for improved sustainable performance in a range of applications, and an important feature is their enhanced tolerance to precipitation in the presence of multivalent counterions. It is proposed that their adsorption properties can be adjusted substantially by changing the length of the shorter alkyl chain, that of the alkanol group in the ester.

    EXPERIMENTS: Surface tension and neutron reflectivity have been used to investigate the variation in the adsorption properties with the shorter alkyl chain length (methyl, ethyl and propyl), the impact of NaCl on the adsorption, the tendency to form surface multilayer structures in the presence of AlCl3, and the effects of mixing the methyl ester sulfonate with the ethyl and propyl ester sulfonates on the adsorption.

    FINDINGS: The variations in the critical micelle concentration, CMC, the adsorption isotherms, the saturation adsorption values, and the impact of NaCl illustrate the subtle influence of varying the shorter alkyl chain length of the surfactant. The non-ideal mixing of pairs of AES surfactants with different alkanol group lengths of the ester show that the extent of the non-ideality changes as the difference in the alkanol length increases. The surface multilayer formation observed in the presence of AlCl3 varies in a complex manner with the length of the short chain and for mixtures of surfactants with different chains lengths.

  11. Liang X, Wang Q, Jiang Z, Li Z, Zhang M, Yang P, et al.
    J Tradit Chin Med, 2020 08;40(4):690-702.
    PMID: 32744037 DOI: 10.19852/j.cnki.jtcm.2020.04.019
    OBJECTIVE: To analyze clinical studies on correlations between Traditional Chinese Medicine (TCM) body constitution types and diseases published in the past 10 years, and to provide an evidence base to support the use of such correlations for health maintenance and disease prevention.

    METHODS: We searched five databases for the period April 2009 to December 2019: China National Knowledge Infrastructure Database, Wanfang Database, China Science and Technology Journal Database, PubMed and Embase. Three types of observational studies on correlation between constitution types and diseases were included: cross-sectional, case-control and cohort studies. Descriptive statistical methods were employed for data analysis.

    RESULTS: A total of 1639 clinical studies were identified: 1452 (88.59%) cross-sectional studies, 115 (7.02%) case-control studies and 72 (4.39%) cohort studies covering 30 regions of China and five other countries (Malaysia, South Korea, Singapore, Thailand and France). The collection of studies comprised 19 disease categories and 333 different diseases. The 10 most commonly studied diseases were hypertension, diabetes, stroke, coronary atherosclerotic heart disease (CAHD), sleep disorders, neoplasm of the breast, dysmenorrhea, fatty liver disease, chronic viral hepatitis B and dyslipidemia. We found high distributions for each biased constitution type in different patient populations as follows: Qi-deficiency constitution in stroke, diabetes, chronic obstructive pulmonary disease, acquired immunodeficiency syndrome and hypertension; Yang-deficiency constitution in female infertility, osteoporosis, irritable bowel syndrome, gonarthrosis and dysmenorrhea; Yin-deficiency constitution in hypertension, diabetes, constipation, female climacteric states and osteoporosis; phlegm- dampness constitution in hypertension, stroke, fatty liver disease, diabetes and metabolic syndrome; damp-heat constitution in acne, chronic gastritis, chronic viral hepatitis B, human papillomavirus infection and hyperuricemia; blood-stasis constitution in CAHD, endometriosis and stroke; Qi-stagnation constitution in hyperplasia and neoplasms of the breast, insomnia, depression and thyroid nodules; and inherited-special constitution in asthma and allergic rhinitis.

    CONCLUSION: Eight biased TCM constitutions were closely related to specific diseases, and could be used to guide individualized prevention and treatment. More rigorously designed studies are recommended to further verify the constitution-disease relationship.

  12. Koschut D, Ray D, Li Z, Giarin E, Groet J, Alić I, et al.
    Oncogene, 2021 01;40(4):746-762.
    PMID: 33247204 DOI: 10.1038/s41388-020-01567-7
    Leukemias are routinely sub-typed for risk/outcome prediction and therapy choice using acquired mutations and chromosomal rearrangements. Down syndrome acute lymphoblastic leukemia (DS-ALL) is characterized by high frequency of CRLF2-rearrangements, JAK2-mutations, or RAS-pathway mutations. Intriguingly, JAK2 and RAS-mutations are mutually exclusive in leukemic sub-clones, causing dichotomy in therapeutic target choices. We prove in a cell model that elevated CRLF2 in combination with constitutionally active JAK2 is sufficient to activate wtRAS. On primary clinical DS-ALL samples, we show that wtRAS-activation is an obligatory consequence of mutated/hyperphosphorylated JAK2. We further prove that CRLF2-ligand TSLP boosts the direct binding of active PTPN11 to wtRAS, providing the molecular mechanism for the wtRAS activation. Pre-inhibition of RAS or PTPN11, but not of PI3K or JAK-signaling, prevented TSLP-induced RAS-GTP boost. Cytotoxicity assays on primary clinical DS-ALL samples demonstrated that, regardless of mutation status, high-risk leukemic cells could only be killed using RAS-inhibitor or PTPN11-inhibitor, but not PI3K/JAK-inhibitors, suggesting a unified treatment target for up to 80% of DS-ALL. Importantly, protein activities-based principal-component-analysis multivariate clusters analyzed for independent outcome prediction using Cox proportional-hazards model showed that protein-activity (but not mutation-status) was independently predictive of outcome, demanding a paradigm-shift in patient-stratification strategy for precision therapy in high-risk ALL.
  13. Yeoh AE, Li Z, Dong D, Lu Y, Jiang N, Trka J, et al.
    Br J Haematol, 2018 Jun;181(5):653-663.
    PMID: 29808917 DOI: 10.1111/bjh.15252
    Accurate risk assignment in childhood acute lymphoblastic leukaemia is essential to avoid under- or over-treatment. We hypothesized that time-series gene expression profiles (GEPs) of bone marrow samples during remission-induction therapy can measure the response and be used for relapse prediction. We computed the time-series changes from diagnosis to Day 8 of remission-induction, termed Effective Response Metric (ERM-D8) and tested its ability to predict relapse against contemporary risk assignment methods, including National Cancer Institutes (NCI) criteria, genetics and minimal residual disease (MRD). ERM-D8 was trained on a set of 131 patients and validated on an independent set of 79 patients. In the independent blinded test set, unfavourable ERM-D8 patients had >3-fold increased risk of relapse compared to favourable ERM-D8 (5-year cumulative incidence of relapse 38·1% vs. 10·6%; P = 2·5 × 10-3 ). ERM-D8 remained predictive of relapse [P = 0·05; Hazard ratio 4·09, 95% confidence interval (CI) 1·03-16·23] after adjusting for NCI criteria, genetics, Day 8 peripheral response and Day 33 MRD. ERM-D8 improved risk stratification in favourable genetics subgroups (P = 0·01) and Day 33 MRD positive patients (P = 1·7 × 10-3 ). We conclude that our novel metric - ERM-D8 - based on time-series GEP after 8 days of remission-induction therapy can independently predict relapse even after adjusting for NCI risk, genetics, Day 8 peripheral blood response and MRD.
  14. Yu S, Kim BK, Wang H, Zhou J, Wan Q, Yu T, et al.
    J Headache Pain, 2022 Nov 21;23(1):146.
    PMID: 36404301 DOI: 10.1186/s10194-022-01514-9
    ABSTACT: BACKGROUND: DRAGON was a phase 3, randomised, double-blind, placebo-controlled study which evaluated the efficacy and safety of erenumab in patients with chronic migraine (CM) from Asia not adequately represented in the global pivotal CM study.

    METHODS: DRAGON study was conducted across 9 Asian countries or regions including mainland China, India, the Republic of Korea, Malaysia, the Philippines, Singapore, Taiwan, Thailand, and Vietnam. Patients (N = 557) with CM (aged 18-65 years) were randomised (1:1) to receive once-monthly subcutaneous erenumab 70 mg or matching placebo for 12 weeks. The primary endpoint was the change in monthly migraine days (MMD) from baseline to the last 4 weeks of the 12-week double-blind treatment phase (DBTP). Secondary endpoints included achievement of ≥ 50% reduction in MMD, change in monthly acute headache medication days, modified migraine disability assessment (mMIDAS), and safety. Study was powered for the primary endpoint of change from baseline in MMD.

    RESULTS: At baseline, the mean (SD) age was 41.7 (± 10.9) years, and 81.5% (n = 454) patients were women. The mean migraine duration was 18.0 (± 11.6) years, and the mean MMD was 19.2 (± 5.4). 97.8% (n = 545) randomised patients completed the DBTP. Overall, demographics and baseline characteristics were balanced between the erenumab and placebo groups except for a slightly higher proportion of women in the placebo group. At Week 12, the adjusted mean change from baseline in MMD was - 8.2 days for erenumab and - 6.6 days for placebo, with a statistically significant difference for erenumab versus placebo (adjusted mean difference vs placebo: - 1.57 [95%CI: - 2.83, - 0.30]; P = 0.015). A greater proportion of patients treated with erenumab achieved ≥ 50% reduction in MMD versus placebo (47.0% vs 36.7%, P = 0.014). At Week 12, greater reductions in monthly acute headache medication days (- 5.34 vs - 4.66) and mMIDAS scores (- 14.67 vs - 12.93) were observed in patients treated with erenumab versus placebo. Safety and tolerability profile of erenumab was comparable to placebo, except the incidence of constipation (8.6% for erenumab vs 3.2% for placebo).

    CONCLUSION: DRAGON study demonstrated the efficacy and safety of erenumab 70 mg in patients with CM from Asia. No new safety signals were observed during the DBTP compared with the previous trials.

    TRIAL REGISTRATION: NCT03867201.

  15. Li L, Shuai L, Sun J, Li C, Yi P, Zhou Z, et al.
    Food Sci Nutr, 2020 Feb;8(2):1284-1294.
    PMID: 32148834 DOI: 10.1002/fsn3.1417
    Mango (Mangifera indica L.) is respiratory climacteric fruit that ripens and decomposes quickly following their harvest. 1-methylcyclopropene (1-MCP) is known to affect the ripening of fruit, delaying the decay of mango stored under ambient conditions. The objective of this study was to clarify the role of 1-MCP in the regulation of ethylene biosynthesis and ethylene receptor gene expression in mango. 1-MCP significantly inhibited the 1-aminocyclopropane-1-carboxylic acid (ACC) content. The activity of ACC oxidase (ACO) increased on days 6, 8, and 10 of storage, whereas delayed ACC synthase (ACS) activity increased after day 4. The two homologous ethylene receptor genes, ETR1 and ERS1 (i.e., MiETR1 and MiERS1), were obtained and deposited in GenBank® (National Center for Biotechnology Information-National Institutes of Health [NCBI-NIH]) (KY002681 and KY002682). The MiETR1 coding sequence was 2,220 bp and encoded 739 amino acids (aa). The MiERS1 coding sequence was 1,890 bp and encoded 629 aa, similar to ERS1 in other fruit. The tertiary structures of MiETR1 and MiERS1 were also predicted. MiERS1 lacks a receiver domain and shares a low homology with MiETR1 (44%). The expression of MiETR1 and MiERS1 mRNA was upregulated as the storage duration extended and reached the peak expression on day 6. Treatment with 1-MCP significantly reduced the expression of MiETR1 on days 4, 6, and 10 and inhibited the expression of MiETR1 on days 2, 4, 6, and 10. These results indicated that MiETR1 and MiERS1 had important functions in ethylene signal transduction. Treatment with 1-MCP might effectively prevent the biosynthesis of ethylene, as well as ethylene-induced ripening and senescence. This study presents an innovative method for prolonging the storage life of mango after their harvest through the regulation of MiETR1 and MiERS1 expression.
  16. Deschepper P, Vanbergen S, Zhang Y, Li Z, Hassani IM, Patel NA, et al.
    Evol Appl, 2023 Jan;16(1):48-61.
    PMID: 36699130 DOI: 10.1111/eva.13507
    An increasing number of invasive fruit fly pests are colonizing new grounds. With this study, we aimed to uncover the invasion pathways of the oriental fruit fly, Bactrocera dorsalis into the islands of the Indian Ocean. By using genome-wide SNP data and a multipronged approach consisting of PCA, ancestry analysis, phylogenetic inference, and kinship networks, we were able to resolve two independent invasion pathways. A western invasion pathway involved the stepping-stone migration of B. dorsalis from the east African coast into the Comoros, along Mayotte and into Madagascar with a decreasing genetic diversity. The Mascarene islands (Reunion and Mauritius), on the contrary, were colonized directly from Asia and formed a distinct cluster. The low nucleotide diversity suggests that only a few genotypes invaded the Mascarenes. The presence of many long runs of homozygosity (ROH) in the introduced populations is indicative of population bottlenecks, with evidence of a more severe bottleneck for populations along the western migration pathway than on the Mascarene islands. More strict phytosanitary regulations are recommended in order to prevent the further spread of B. dorsalis.
  17. Yang Q, Wu F, Peñuelas J, Sardans J, Peng Y, Wu Q, et al.
    Environ Res, 2024 Dec 01;262(Pt 2):119963.
    PMID: 39251176 DOI: 10.1016/j.envres.2024.119963
    The significance of intermittent streams in nutrient loss within forest ecosystems is becoming increasingly critical due to changes in precipitation patterns associated with global climate change. However, few studies have focused on nutrient export from intermittent streams. We conducted continuous sediment collection from intermittent streams from March 2022 to February 2023 to investigate the export pattern and mechanism of sediment-associated nitrogen (N) from intermittent streams of different forest types (composed forest of Castanopsis carlesii (Cas. carlesii) and Cunninghamia lanceolata (C. lanceolata) forests, compared to Cas. carlesii forests). We measured the N concentrations and calculated the export amounts of four common forms of N associated with sediments: total N (TN), dissolved N (DN), nitrate, and ammonia. Our results showed that (1) the annual average exports of TN, DN, nitrate, and ammonia associated with sediments from intermittent streams from both forest types were 273, 1.62, 0.26, and 0.84 kg ha-1, respectively; (2) N export was significantly higher in composite forests of Cas. carlesii and C. lanceolata, compared to Cas. carlesii forests; (3) stream sediment export amount positively affected N export both in composite forests and Cas. carlesii forests; and (4) N export was also controlled by rainfall amount and stream characteristics. Our study quantified sediment-associated N export from intermittent streams among different subtropical forest types, which will enhance our understanding of N dynamics associated with stream hydrological processes in subtropical forests.
  18. Tong WK, Dai C, Hu J, Li J, Gao MT, You X, et al.
    Sci Total Environ, 2024 Jan 10;907:168099.
    PMID: 37884130 DOI: 10.1016/j.scitotenv.2023.168099
    Nanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene). Through the analysis of the two-site non-equilibrium diffusion model, there was a synergistic effect between NBs and RL. The introduction of NBs led to a reduction of up to 24.3 % in the total removal time of phenanthrene. The direct reason for this was that with NBs, the retardation factor of RL was reduced by 1.9 % to 15.4 %, which accelerated the solute replacement of RL. The reasons for this synergy were multifaceted. Detailed analysis reveals that NBs improve RL's colloidal stability, increase its absolute zeta potential, and reduce its soil adsorption capacity by 13.3 %-19.9 %. Furthermore, NBs and their interaction with RL substantially diminish the surface tension, contact angle, and dynamic viscosity of the leaching solution. These changes in surface thermodynamic and rheological properties significantly enhance the migration efficiency of the eluent. The research outcomes facilitate a thorough comprehension of NBs' attributes and their relevant applications, and propose an eco-friendly method to improve the efficiency of surfactant remediation.
  19. Rey-Iglesia A, Gopalakrishan S, Carøe C, Alquezar-Planas DE, Ahlmann Nielsen A, Röder T, et al.
    Mol Ecol Resour, 2019 Mar;19(2):512-525.
    PMID: 30575257 DOI: 10.1111/1755-0998.12984
    In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.
  20. Jiang N, Wang L, Xiang X, Li Z, Chiew EKH, Koo YM, et al.
    Br J Clin Pharmacol, 2021 Apr;87(4):1990-1999.
    PMID: 33037681 DOI: 10.1111/bcp.14596
    AIMS: Vincristine (VCR) is a key drug in the successful multidrug chemotherapy for childhood acute lymphoblastic leukaemia (ALL). However, it remains unclear how VCR pharmacokinetics affects its antileukaemic efficacy. The objective of this study is to explore the VCR pharmacokinetic parameters and intracellular VCR levels in an up-front window of Ma-Spore ALL 2010 (MS2010) study.

    METHODS: We randomised 429 children with newly diagnosed ALL to 15-minute vs 3-hour infusion for the first dose of VCR to study if prolonging the first dose of VCR infusion improved response. In a subgroup of 115 B-ALL and 20 T-ALL patients, we performed VCR plasma (n = 135 patients) and intracellular (n = 66 patients) pharmacokinetic studies. The correlations between pharmacokinetic parameters and intracellular VCR levels with early treatment response, final outcome and ABCB1 genotypes were analysed.

    RESULTS: There was no significant difference between 15-minute and 3-hour infusion schedules in median Day 8 peripheral or bone marrow blast response. Plasma VCR pharmacokinetic parameters did not predict outcome. However, in B-ALL, Day 33 minimal residual disease (MRD) negative patients and patients in continuous complete remission had significantly higher median intracellular VCR24h levels (P = .03 and P = .04, respectively). The median VCR24h intracellular levels were similar among the common genetic subtypes of ALL (P = .4). Patients homozygous for wild-type ABCB1 2677GG had significantly higher median intracellular VCR24h (P = .04) than 2677TT.

    CONCLUSION: We showed that in childhood B-ALL, the intracellular VCR24h levels in lymphoblasts affected treatment outcomes. The intracellular VCR24h level was independent of leukaemia subtype but dependent on host ABCB1 G2677T genotype.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links