Displaying publications 61 - 77 of 77 in total

Abstract:
Sort:
  1. Mat Hadzir N, Basri M, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RN, Basri H
    AAPS PharmSciTech, 2013 Mar;14(1):456-63.
    PMID: 23386307 DOI: 10.1208/s12249-013-9929-1
    Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-A-Time Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.
  2. Abdul Rahman MB, Jumbri K, Basri M, Abdulmalek E, Sirat K, Salleh AB
    Molecules, 2010 Apr 05;15(4):2388-97.
    PMID: 20428050 DOI: 10.3390/molecules15042388
    This paper reports the synthesis of a series of new tetraethylammonium-based amino acid chiral ionic liquids (CILs). Their physico-chemical properties, including melting point, thermal stability, viscosity and ionic conductivity, have been comprehensively studied. The obtained results indicated that the decomposition for these salts proceeds in one step and the temperature of decomposition (T(onset)) is in the range of 168-210 degrees C. Several new CILs prepared in this work showed high ionic conductivity compared to the amino acid ionic liquids (AAILs) found in the literature.
  3. Abdul Rahman MZ, Salleh AB, Abdul Rahman RN, Abdul Rahman MB, Basri M, Leow TC
    Protein Sci, 2012 Aug;21(8):1210-21.
    PMID: 22692819 DOI: 10.1002/pro.2108
    The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.
  4. Miah MH, Khandaker MU, Rahman MB, Nur-E-Alam M, Islam MA
    RSC Adv, 2024 May 15;14(23):15876-15906.
    PMID: 38756852 DOI: 10.1039/d4ra01640h
    The intriguing optoelectronic properties, diverse applications, and facile fabrication techniques of perovskite materials have garnered substantial research interest worldwide. Their outstanding performance in solar cell applications and excellent efficiency at the lab scale have already been proven. However, owing to their low stability, the widespread manufacturing of perovskite solar cells (PSCs) for commercialization is still far off. Several instability factors of PSCs, including the intrinsic and extrinsic instability of perovskite materials, have already been identified, and a variety of approaches have been adopted to improve the material quality, stability, and efficiency of PSCs. In this review, we have comprehensively presented the significance of band gap tuning in achieving both high-performance and high-stability PSCs in the presence of various degradation factors. By investigating the mechanisms of band gap engineering, we have highlighted its pivotal role in optimizing PSCs for improved efficiency and resilience.
  5. Mohtar NS, Abdul Rahman MB, Mustafa S, Mohamad Ali MS, Raja Abd Rahman RNZ
    PeerJ, 2019;7:e6880.
    PMID: 31183251 DOI: 10.7717/peerj.6880
    Sago starch is traditionally used as food especially in Southeast Asia. Generally, sago is safe for consumption, biodegradable, easily available and inexpensive. Therefore, this research was done to expand the potential of sago by using it as a support for enzyme immobilization. In this study, ARM lipase, which was isolated from Geobacillus sp. strain ARM, was overexpressed in Escherichia coli system and then purified using affinity chromatography. The specific activity of the pure enzyme was 650 U/mg, increased 7 folds from the cell lysate. The purified enzyme was immobilized in gelatinized sago and spray-dried by entrapment technique in order to enhance the enzyme operational stability for handling at high temperature and also for storage. The morphology of the gelatinized sago and immobilized enzyme was studied by scanning electron microscopy. The results showed that the spray-dried gelatinized sago was shrunken and became irregular in structure as compared to untreated sago powder. The surface areas and porosities of spray-dried gelatinized sago with and without the enzyme were analyzed using BET and BJH method and have shown an increase in surface area and decrease in pore size. The immobilized ARM lipase showed good performance at 60-80  °C, with a half-life of 4 h and in a pH range 6-9. The immobilized enzyme could be stored at 10 °C with the half-life for 9 months. Collectively, the spray-dried immobilized lipase shows promising capability for industrial uses, especially in food processing.
  6. Wahab RA, Basri M, Rahman RN, Salleh AB, Rahman MB, Chaibakhsh N, et al.
    Biotechnology, biotechnological equipment, 2014 Nov 02;28(6):1065-1072.
    PMID: 26740782
    Most substrate for esterification has the inherent problem of low miscibility which requires addition of solvents into the reaction media. In this contribution, we would like to present an alternative and feasible option for an efficient solvent-free synthesis of menthyl butyrate using a novel thermostable crude T1 lipase. We investigated the effects of incubation time, temperature, enzyme loading and substrate molar ratio and determined the optimum conditions. The high conversion of menthyl butyrate catalyzed by crude T1 lipase in a solvent-free system is greatly affected by temperature and time of the reaction media. The highest yield of menthyl butyrate was 99.3% under optimized conditions of 60 °C, incubation time of 13.15 h, 2.53 mg, 0.43% (w/w) enzyme to substrate ratio and at molar ratio of butyric anhydride/menthol 2.7:1. Hence, the investigation revealed that the thermostable crude T1 lipase successfully catalyzed the high-yield production of menthyl butyrate in a solvent-free system. The finding suggests that the crude T1 lipase was a promising alternative to overcome shortcomings associated with solvent-assisted enzymatic reactions.
  7. Cheong KW, Leow TC, Rahman RN, Basri M, Rahman MB, Salleh AB, et al.
    Appl Biochem Biotechnol, 2011 Jun;164(3):362-75.
    PMID: 21153892 DOI: 10.1007/s12010-010-9140-8
    A thermostable lipase from Geobacillus zalihae strain T1 was chemically modified using propionaldehyde via reductive alkylation. The targeted alkylation sites were lysines, in which T1 lipase possessed 11 residues. Far-UV circular dichroism (CD) spectra of both native and alkylated enzyme showed a similar broad minimum between 208 and 222 nm, thus suggesting a substantial amount of secondary structures in modified enzyme, as compared with the corresponding native enzyme. The hydrolytic activity of the modified enzymes dropped drastically by nearly 15-fold upon chemical modification, despite both the native and modified form showed distinctive α-helical bands at 208 and 222 nm in CD spectra, leading us to the hypothesis of formation of a molten globule (MG)-like structure. As cooperative unfolding transitions were observed, the modified lipase was distinguished from the native state, in which the former possessed a denaturation temperature (T(m)) in lower temperature range at 61 °C while the latter at 68 °C. This was further supported by 8-anilino-1-naphthalenesulfonic acid (ANS) probed fluorescence which indicated higher exposure of hydrophobic residues, consequential of chemical modification. Based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, a small number of lysine residues were confirmed to be alkylated.
  8. Adnani A, Basri M, Chaibakhsh N, Ahangar HA, Salleh AB, Rahman RN, et al.
    Carbohydr Res, 2011 Mar 1;346(4):472-9.
    PMID: 21276966 DOI: 10.1016/j.carres.2010.12.023
    Immobilized Candida antarctica lipase B-catalyzed esterification of xylitol and two fatty acids (capric and caproic acid) were studied in a solvent-free system. The Taguchi orthogonal array method based on three-level-four-variables with nine experiments was applied for the analysis and optimization of the reaction parameters including time, substrate molar ratio, amount of enzyme, and amount of molecular sieve. The obtained conversion was higher in the esterification of xylitol and capric acid with longer chain length. The optimum conditions derived via the Taguchi approach for the synthesis of xylitol caprate and xylitol caproate were reaction time, 29 and 18h; substrate molar ratio, 0.3 and 1.0; enzyme amount, 0.20 and 0.05g, and molecular sieve amount of 0.03g, respectively. The good correlation between the predicted conversions (74.18% and 61.23%) and the actual values (74.05% and 60.5%) shows that the model derived from the Taguchi orthogonal array can be used for optimization and better understanding of the effect of reaction parameters on the enzymatic synthesis of xylitol esters in a solvent-free system.
  9. Abdul Rahman MB, Karjiban RA, Salleh AB, Jacobs D, Basri M, Thean Chor AL, et al.
    Protein Pept Lett, 2009;16(11):1360-70.
    PMID: 20001926
    The stability of biocatalysts is an important criterion for a sustainable industrial operation economically. T1 lipase is a thermoalkalophilic enzyme derived from Geobacillus zalihae strain T1 (T1 lipase) that was isolated from palm oil mill effluent (POME) in Malaysia. We report here the results of high temperatures molecular dynamics (MD) simulations of T1 lipase in explicit solvent. We found that the N-terminal moiety of this enzyme was accompanied by a large flexibility and dynamics during temperature-induced unfolding simulations which preceded and followed by clear structural changes in two specific regions; the small domain (consisting of helices alpha3 and alpha5, strands beta1 and beta2, and connecting loops) and the main catalytic domain or core domain (consisting of helices alpha6- alpha9 and connecting loops which located above the active site) of the enzyme. The results suggest that the small domain of model enzyme is a critical region to the thermostability of this organism.
  10. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

  11. Rahman RN, Tejo BA, Basri M, Rahman MB, Khan F, Zain SM, et al.
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):11-20.
    PMID: 15304735
    Candida rugosa lipase was modified via reductive alkylation to increase its hydrophobicity to work better in organic solvents. The free amino group of lysines was alkylated using propionaldehyde with different degrees of modification obtained (49 and 86%). Far-ultraviolet circular dichroism (CD) spectroscopy of the lipase in aqueous solvent showed that such chemical modifications at the enzyme surface caused a loss in secondary and tertiary structure that is attributed to the enzyme unfolding. Using molecular modeling, we propose that in an aqueous environment the loss in protein structure of the modified lipase is owing to disruption of stabilizing salt bridges, particularly of surface lysines. Indeed, molecular modeling and simulation of a salt bridge formed by Lys-75 to Asp-79, in a nonpolar environment, suggests the adoption of a more flexible alkylated lysine that may explain higher lipase activity in organic solvents on alkylation.
  12. Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E, Rahman RN, et al.
    Biosci Biotechnol Biochem, 2011;75(8):1446-50.
    PMID: 21821960
    The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K(m) and V(max), were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K(m) values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V(max,app)>V(max)). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.
  13. Abd Gani SS, Basri M, Rahman MB, Kassim A, Abd Rahman RN, Salleh AB, et al.
    Biosci Biotechnol Biochem, 2010;74(6):1188-93.
    PMID: 20530909
    Formulations containing engkabang fat and engkabang fat esters, F10 and E15 respectively were prepared using a high-shear homogenizer, followed by a high-pressure homogenizer. Both formulations were stable at room temperature, at 45 degrees C, and after undergoing freeze-thaw cycles. The particle sizes of F10 and E15 after high pressure were 115.75 nm and 148.41 nm respectively. The zeta potentials of F10 and E15 were -36.4 mV and -48.8 mV respectively, while, the pH values of F10 and E15 were 5.59 and 5.81 respectively. The rheology of F10 and E15 showed thixotropy and pseudoplastic behavior respectively. There were no bacteria or fungal growths in the samples. The short-term moisturizing effect on 20 subjects analyzed by analysis of variance (ANOVA), gave p-values of 7.35 x 10(-12) and 2.77 x 10(-15) for F10 and E15 respectively. The hydration of the skins increased after application of F10 and E15 with p-value below 0.05.
  14. Tan SH, Normi YM, Leow AT, Salleh AB, Murad AM, Mahadi NM, et al.
    J. Biochem., 2017 02 01;161(2):167-186.
    PMID: 28175318 DOI: 10.1093/jb/mvw058
    The effectiveness of β-lactam antibiotics as chemotherapeutic agents to treat bacterial infections is gradually threatened with the emergence of antibiotic resistance mechanism among pathogenic bacteria through the production metallo-β-lactamase (MBL). In this study, we discovered a novel hypothetical protein (HP) termed Bleg1_2437 from the genome of alkaliphilic Bacillus lehensis G1 which exhibited MBL-like properties of B3 subclass; but evolutionary divergent from other circulating B3 MBLs. Domain and sequence analysis of HP Bleg1_2437 revealed that it contains highly conserved Zn2+-binding residues such as H54, H56, D58, H59, H131 and H191, important for catalysis, similar with the subclass B3 of MBL. Built 3-D Bleg1_2437 structure exhibited an αββα sandwich layer similar to the well-conserved global topology of MBL superfamily. Other features include a ceiling and floor in the model which are important for accommodation and orientation of β-lactam antibiotics docked to the protein model showed interactions at varying degrees with residues in the binding pocket of Bleg1_2437. Hydrolysis activity towards several β-lactam antibiotics was proven through an in vitro assay using purified recombinant Bleg1_2437 protein. These findings highlight the presence of a clinically important and evolutionary divergent antibiotics-degrading enzyme within the pools of uncharacterized HPs.
  15. Tan SH, Normi YM, Leow AT, Salleh AB, Karjiban RA, Murad AM, et al.
    BMC Struct Biol, 2014 Mar 19;14:11.
    PMID: 24641837 DOI: 10.1186/1472-6807-14-11
    BACKGROUND: At least a quarter of any complete genome encodes for hypothetical proteins (HPs) which are largely non-similar to other known, well-characterized proteins. Predicting and solving their structures and functions is imperative to aid understanding of any given organism as a complete biological system. The present study highlights the primary effort to classify and cluster 1202 HPs of Bacillus lehensis G1 alkaliphile to serve as a platform to mine and select specific HP(s) to be studied further in greater detail.

    RESULTS: All HPs of B. lehensis G1 were grouped according to their predicted functions based on the presence of functional domains in their sequences. From the metal-binding group of HPs of the cluster, an HP termed Bleg1_2507 was discovered to contain a thioredoxin (Trx) domain and highly-conserved metal-binding ligands represented by Cys69, Cys73 and His159, similar to all prokaryotic and eukaryotic Sco proteins. The built 3D structure of Bleg1_2507 showed that it shared the βαβαββ core structure of Trx-like proteins as well as three flanking β-sheets, a 310 -helix at the N-terminus and a hairpin structure unique to Sco proteins. Docking simulations provided an interesting view of Bleg1_2507 in association with its putative cytochrome c oxidase subunit II (COXII) redox partner, Bleg1_2337, where the latter can be seen to hold its partner in an embrace, facilitated by hydrophobic and ionic interactions between the proteins. Although Bleg1_2507 shares relatively low sequence identity (47%) to BsSco, interestingly, the predicted metal-binding residues of Bleg1_2507 i.e. Cys-69, Cys-73 and His-159 were located at flexible active loops similar to other Sco proteins across biological taxa. This highlights structural conservation of Sco despite their various functions in prokaryotes and eukaryotes.

    CONCLUSIONS: We propose that HP Bleg1_2507 is a Sco protein which is able to interact with COXII, its redox partner and therefore, may possess metallochaperone and redox functions similar to other documented bacterial Sco proteins. It is hoped that this scientific effort will help to spur the search for other physiologically relevant proteins among the so-called "orphan" proteins of any given organism.

  16. Zakaria N, Wan Harun WMRS, Mohammad Latif MA, Azaman SNA, Abdul Rahman MB, Faujan NH
    J Mol Graph Model, 2024 Jun;129:108732.
    PMID: 38412813 DOI: 10.1016/j.jmgm.2024.108732
    Recent evidence from in vitro and in vivo studies has shown that anthocyanins and anthocyanidins can reduce and inhibit the amyloid beta (Aβ) species, one of the hallmarks of Alzheimer's disease (AD). However, their inhibition mechanisms on Aβ species at molecular details remain elusive. Therefore, in the present study, molecular modelling methods were employed to investigate their inhibitory mechanisms on Aβ(1-42) peptide. The results highlighted that anthocyanidins effectively inhibited the conformational transitions of helices into beta-sheet (β-sheet) conformation within Aβ(1-42) peptide by two different mechanisms: 1) the obstruction of two terminals from coming into contact due to the binding of anthocyanidins with residues of N- and second hydrophobic core (SHC)-C-terminals, and 2) the prevention of the folding process due to the binding of anthocyanidin with the central polar (Asp23 and Lys28) and native helix (Asp23, Lys28, and Leu34) residues. These new findings on the inhibition of β-sheet formation by targeting both N- and SHC-C-terminals, and the long-established target, D23-K28 salt bridge residues, not with the conventional central hydrophobic core (CHC) as reported in the literature, might aid in designing more potent inhibitors for AD treatment.
  17. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links