Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, et al.
    J Biotechnol, 2023 Jun 10;369:14-34.
    PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003
    The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood . Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  2. Khor GK, Sim JH, Kamaruddin AH, Uzir MH
    Bioresour Technol, 2010 Aug;101(16):6558-61.
    PMID: 20363621 DOI: 10.1016/j.biortech.2010.03.047
    In order to characterize enzyme activity and stability corresponding to temperature effects, thermodynamic studies on commercial immobilized lipase have been carried out via enzymatic transesterification. An optimum temperature of 40 degrees C was obtained in the reaction. The decreasing reaction rates beyond the optimum temperature indicated the occurrence of reversible enzyme deactivation. Thermodynamic studies on lipase denaturation exhibited a first-order kinetics pattern, with considerable stability through time shown by the lipase as well. The activation and deactivation energies were 22.15 kJ mol(-1) and 45.18 kJ mol(-1), respectively, implying more energy was required for the irreversible denaturation of the enzyme to occur. At water content of 0.42%, the initial reaction rate and FAME yield displayed optimum values of 3.317 g/L min and 98%, respectively.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  3. Rahman MB, Basri M, Hussein MZ, Rahman RN, Zainol DH, Salleh AB
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):313-20.
    PMID: 15304759
    Synthesis of layered double hydroxides (LDHs) of Zn/Al-NO3- hydrotalcite (HIZAN) and Zn/Al-diocytyl sodium sulfosuccinate (DSS) nanocomposite (NAZAD) with a molar ratio of Zn/Al of 4:1 were carried out by coprecipitation through continuous agitation. Their structures were determined using X-ray diffractometer spectra, which showed that basal spacing for LDH synthesized by both methods was about 8.89 A. An expansion of layered structure of about 27.9 A was observed to accommodate the surfactant anion between the interlayer. This phenomenon showed that the intercalation process took place between the LDH interlayer. Lipase from Candida rugosa was immobilized onto these materials by physical adsorption method. It was found that the protein loading onto NAZAD is higher than HIZAN. The activity of immobilized lipase was investigated through esterification of oleic acid and 1-butanol in hexane. The effects of pore size, surface area, reaction temperature, thermostability of the immobilized lipases, storage stability in organic solvent, and leaching studies were investigated. Stability was found to be the highest in the nanocomposite NAZAD.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  4. Esa NM, Yunus WM, Ahmad MB, Basri M, Razak CN, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:489-92.
    PMID: 9928130
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  5. Abdul Rahman MB, Jarmi NI, Chaibakhsh N, Basri M
    J Ind Microbiol Biotechnol, 2011 Jan;38(1):229-34.
    PMID: 20803246 DOI: 10.1007/s10295-010-0817-3
    Esterification of succinic acid with oleyl alcohol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was investigated in this study. Response surface methodology (RSM) based on a five-level, four-variable central composite design (CCD) was used to model and analyze the reaction. A total of 21 experiments representing different combinations of the four parameters including temperature (35-65°C), time (30-450 min), enzyme amount (20-400 mg), and alcohol:acid molar ratio (1:1-8:1) were generated. A partial cubic equation could accurately model the response surface with a R(2) of 0.9853. The effect and interactions of the variables on the ester synthesis were also studied. Temperature was found to be the most significant parameter that influenced the succinate ester synthesis. At the optimal conditions of 41.1°C, 272.8 min, 20 mg enzyme amount and 7.8:1 alcohol:acid molar ratio, the esterification percentage was 85.0%. The model can present a rapid means for estimating the conversion yield of succinate ester within the selected ranges.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  6. Jacob AG, Wahab RA, Mahat NA
    Enzyme Microb Technol, 2021 Aug;148:109807.
    PMID: 34116744 DOI: 10.1016/j.enzmictec.2021.109807
    Oil palm leaves (OPL) silica (SiO2) can replace the energy-intensive, commercially produced SiO2. Moreover, the agronomically sourced biogenic SiO2 is more biocompatible and cost-effective enzyme support, which properties could be improved by the addition of magnetite (Fe3O4) and graphene oxide (GO) to yield better ternary support to immobilize enzymes, i.e., Candida rugosa lipase (CRL). This study aimed to optimize the Candida rugosa lipase (CRL immobilization onto the ternary OPL-silica-magnetite (Fe3O4)-GO (SiO2/Fe3O4/GO) support, for use as biocatalyst for ethyl valerate (EV) production. Notably, this is the first study detailing the CRL/SiO2/Fe3O4/GO biocatalyst preparation for rapid and high yield production of ethyl valerate (EV). AFM and FESEM micrographs revealed globules of CRL covalently bound to GL-A-SiO2/Fe3O4/GO; similar to Raman and UV-spectroscopy results. FTIR spectra revealed amide bonds at 3478 cm-1 and 1640 cm-1 from covalent interactions between CRL and GL-A-SiO2/Fe3O4/GO. Optimum immobilization conditions were 4% (v/v) glutaraldehyde, 8 mg/mL CRL, at 16 h stirring in 150 mM NaCl at 30 °C, offering 24.78 ± 0.26 mg/g protein (specific activity = 65.24 ± 0.88 U/g). The CRL/SiO2/Fe3O4/GO yielded 77.43 ± 1.04 % of EV compared to free CRL (48.75 ± 0.70 %), verifying the suitability of SiO2/Fe3O4/GO to hyperactivate and stabilize CRL for satisfactory EV production.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  7. Kahar UM, Chan KG, Sani MH, Mohd Noh NI, Goh KM
    Int J Biol Macromol, 2017 Nov;104(Pt A):322-332.
    PMID: 28610926 DOI: 10.1016/j.ijbiomac.2017.06.054
    Type I pullulanase from Anoxybacillus sp. SK3-4 (PulASK) is an unusual debranching enzyme that specifically hydrolyzes starch α-1,6 linkages at long branches producing oligosaccharides (≥G8), but is nonreactive against short branches; thus, incapable of producing reducing sugars (G1-G7). We report on the effects of both single and co-immobilization of PulASK on product specificity. PulASK was purified and immobilized through covalent attachment to three epoxides (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Following immobilization, all PulASK derivatives were active on both short and long branches in starch producing reducing sugars (predominantly maltotriose) and oligosaccharides (≥G8), respectively, a feature that is absent in the free enzyme. This study also demonstrated that co-immobilization of PulASK and α-amylase from Anoxybacillus sp. SK3-4 (TASKA) on ReliZyme HFA403/M significantly changed the product specificity compared to the free enzymes alone or individually immobilized enzymes. In conclusion, individual or co-immobilization caused changes in the product specificity, presumably due to changes in the enzyme binding pocket caused by the influence of carrier surface properties (hydrophobic or hydrophilic) and the lengths of the spacer arms.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  8. Wafti NSA, Yunus R, Lau HLN, Yaw TCS, Aziz SA
    Bioprocess Biosyst Eng, 2021 Nov;44(11):2429-2444.
    PMID: 34269888 DOI: 10.1007/s00449-021-02615-6
    The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (- 30 ± - 2 °C), cloud point (- 15 ± - 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  9. Jailani N, Jaafar NR, Rahman RA, Illias RM
    Enzyme Microb Technol, 2023 Sep;169:110283.
    PMID: 37433237 DOI: 10.1016/j.enzmictec.2023.110283
    One of the potentials of carrier-free cross-linked enzyme aggregates (CLEA) immobilization is the ability to be separated and reuse. Yet, it might be impeded by the poor mechanical stability resulting low recyclability. CLEA of CGTase from Bacillus lehensis G1 (CGTase G1-CLEA) using chitosan (CS) as a cross-linker demonstrated high activity recovery however, displayed poor reusability. Therefore, the relationship between mechanical strength and reusability is studied by enhancing the CS mechanical properties and applying a new co-aggregation approach. Herein, CS was chemically cross-linked with glutaraldehyde (GA) and GA was introduced as a co-aggregant (coGA). CGTase G1-CLEA developed using an improved synthesized chitosan-glutaraldehyde (CSGA) cross-linker and a new coGA technique showed to increase its mechanical stability which retained 63.4% and 52.2%, respectively compared to using CS that remained 33.1% of their initial activity after stirred at 500 rpm. The addition of GA impacted the morphology and interaction consequently stabilizing the CLEAs durability in production of cyclodextrins. As a result, the reusability of CGTase G1-CLEA with CSGA and coGA increased by 56.6% and 42.8%, respectively compared to previous CLEA after 5 cycles for 2 h of reaction. This verifies that the mechanical strength of immobilized enzyme influences the improvement of its operational stability.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  10. Tan IS, Lee KT
    Bioresour Technol, 2015 May;184:386-94.
    PMID: 25465785 DOI: 10.1016/j.biortech.2014.10.146
    A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  11. Ganasen P, Khan MR, Kalam MA, Mahmud MS
    Bioprocess Biosyst Eng, 2014 Nov;37(11):2353-9.
    PMID: 24879090 DOI: 10.1007/s00449-014-1213-6
    This paper demonstrates Pseudomonas cepacia lipase catalyzed hydrolysis of p-nitrophenyl palmitate under irradiation of light with wavelengths of 250-750 nm. The reaction follows Michaelis-Menten Kinetics and the light irradiation increases the overall rate of hydrolysis. Using Lineweaver-Burk plot K M and V max values for the reaction in presence of light are found to be 39.07 and 66.67 mM/min/g, respectively; while for the same reaction under dark condition, the values are 7.08 and 10.21 mM/min/g. The linear form of enzyme dependent rate of reaction confirms that no mass-transfer limitations are present and the reaction is a kinetically controlled enzymatic reaction.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  12. Kuswandi B, Irmawati T, Hidayat MA, Jayus, Ahmad M
    Sensors (Basel), 2014;14(2):2135-49.
    PMID: 24473284 DOI: 10.3390/s140202135
    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  13. Chaibakhsh N, Rahman MB, Basri M, Salleh AB, Abd-Aziz S
    Biotechnol J, 2010 Aug;5(8):848-55.
    PMID: 20632329 DOI: 10.1002/biot.201000063
    Dimethyl adipate (DMA) was synthesized by immobilized Candida antarctica lipase B-catalyzed esterification of adipic acid and methanol. To optimize the reaction conditions of ester production, response surface methodology was applied, and the effects of four factors namely, time, temperature, enzyme concentration, and molar ratio of substrates on product synthesis were determined. A statistical model predicted that the maximum conversion yield would be 97.6%, at the optimal conditions of 58.5 degrees C, 54.0 mg enzyme, 358.0 min, and 12:1 molar ratio of methanol to adipic acid. The R(2) (0.9769) shows a high correlation between predicted and experimental values. The kinetics of the reaction was also investigated in this study. The reaction was found to obey the ping-pong bi-bi mechanism with methanol inhibition. The kinetic parameters were determined and used to simulate the experimental results. A good quality of fit was observed between the simulated and experimental initial rates.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  14. Abdulmalek E, Arumugam M, Basri M, Rahman MB
    Int J Mol Sci, 2012;13(10):13140-9.
    PMID: 23202943 DOI: 10.3390/ijms131013140
    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H(2)O(2)) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%-99%) under the optimum reaction conditions, including temperature (35 °C), initial H(2)O(2) concentration (30%), H(2)O(2) amount (4.4 mmol), H(2)O(2) addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H(2)O(2) with a catalytic activity of 190.0 Ug-1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  15. Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M
    Sensors (Basel), 2015;15(10):24681-97.
    PMID: 26404269 DOI: 10.3390/s151024681
    Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM(-1)), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
    Matched MeSH terms: Enzymes, Immobilized/metabolism
  16. Karim Z, Khan MJ, Maskat MY, Adnan R
    Prep Biochem Biotechnol, 2016 May 18;46(4):321-7.
    PMID: 25830286 DOI: 10.1080/10826068.2015.1031389
    This study aimed to work out a simple and high-yield procedure for the immobilization of horseradish peroxidase on silver nanoparticle. Ultraviolet-visible (UV-vis) and Fourier-transform infrared spectroscopy and transmission electron microscopy were used to characterize silver nanoparticles. Horseradish peroxidase was immobilized on β-cyclodextrin-capped silver nanoparticles via glutaraldehyde cross-linking. Single-cell gel electrophoresis (Comet assay) was also performed to confirm the genotoxicity of silver nanoparticles. To decrease toxicity, silver nanoparticles were capped with β-cyclodextrin. A comparative stability study of soluble and immobilized enzyme preparations was investigated against pH, temperature, and chaotropic agent, urea. The results showed that the cross-linked peroxidase was significantly more stable as compared to the soluble counterpart. The immobilized enzyme exhibited stable enzyme activities after repeated uses.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  17. Min CS, Bhatia S, Kamaruddin AH
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):417-21.
    PMID: 10595442
    Continuous hydrolysis of palm oil triglyceride in organic solvent using immobilized Candida rugosa on the Amberlite MB-1 as a source of immobilized lipase was studied in packed bed reactor. The enzymatic kinetics of hydrolysis reaction was studied by changing the substrate concentration, reaction temperature and residence time(tau) in the reactor. At 55 degrees C, the optimum water concentration was found to be 15 % weight per volume of solution (%w/v). The Michaelis-Menten kinetic model was used to obtain the reaction parameters, Km(app) and V max(app). The activation energies were found to be quite low indicating that the lipase-catalyzed process is controlled by diffusion of substrates. The Michaelis-Menten kinetic model was found to be suitable at low water concentration 10-15 %w/v of solution. At higher water concentration, substrate inhibition model was used for data analysis. Reactor operation was found to play an important role in the palm oil hydrolysis kinetic.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  18. Bhatia S, Naidu AD, Kamaruddin AH
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):435-40.
    PMID: 10595445
    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  19. Lee PM, Lee KH, Siaw YS
    J Chem Technol Biotechnol, 1993;58(1):65-70.
    PMID: 7763937
    Aminoacylase I (EC. 3.5.1.14) was immobilized by covalent crosslinking to alginate molecules with 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide HCl followed by calcium alginate bead formation for the production of L-phenylalanine from the racemic mixtures of N-acetyl-DL-phenylalanine. Different concentrations of the coupling reagent were tested and the coupling process was optimized. The immobilized and the partially purified aminoacylase were characterized in terms of the activity, operational stability, thermal stability, pH and temperature optima and kinetic constants, Km and Vmax. The activity of the enzyme covalently immobilized in calcium alginate beads was enhanced by about 75% compared to that of free enzyme. The beads showed stable activity under operational conditions, they lost about 40% of their activity after four reaction cycles. The immobilized aminoacylase was more stable over a broader pH range. Thus this simple method provides irreversible immobilization of aminoacylase to give a biocatalyst with good operational stability and enhanced activity.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  20. Lee PM, Lee KH, Siaw YS
    PMID: 8260581
    Aminoacylase I (E.C.3.5.1.14) was immobilized by entrapment in calcium alginate beads coated with polyethyleneimine for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The operational stability in terms of batch operation and continuous reaction in packed-bed bioreactor were studied. Kinetic constants, Km and Vmax values of free and immobilized enzymes were studied. Polyethyleneimine treatment was found to enhance the operational stability of the enzyme though its activity was substantially reduced. When polyethyleneimine-coated calcium alginate beads were packed into packed bed bioreactor, it was stable for at least 25 days under continuous operation without appreciable loss of activity.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links