Displaying publications 61 - 80 of 146 in total

Abstract:
Sort:
  1. Alamri RD, Elmeligy MA, Albalawi GA, Alquayr SM, Alsubhi SS, El-Ghaiesh SH
    Int Immunopharmacol, 2021 Apr;93:107398.
    PMID: 33571819 DOI: 10.1016/j.intimp.2021.107398
    Leflunomide (LF) represents the prototype member of dihydroorotate dehydrogenase (DHODH) enzyme inhibitors. DHODH is a mitochondrial inner membrane enzyme responsible for catalytic conversion of dihydroorotate into orotate, a rate-limiting step in the de novo synthesis of the pyrimidine nucleotides. LF produces cellular depletion of pyrimidine nucleotides required for cell growth and proliferation. Based on the affected cells the outcome can be attainable as immunosuppression, antiproliferative, and/or the recently gained attention of the antiviral potentials of LF and its new congeners. Also, protein tyrosine kinase inhibition is an additional mechanistic benefit of LF, which inhibits immunological events such as cellular expansion and immunoglobulin production with an enhanced release of immunosuppressant cytokines. LF is approved for the treatment of autoimmune arthritis of rheumatoid and psoriatic pathogenesis. Also, LF has been used off-label for the treatment of relapsing-remitting multiple sclerosis. However, LF antiviral activity is repurposed and under investigation with related compounds under a phase-I trial as a SARS CoV-2 antiviral in cases with COVID-19. Despite success in improving patients' mobility and reducing joint destruction, reported events of LF-induced liver injury necessitated regulatory precautions. LF should not be used in patients with hepatic impairment or in combination with drugs elaborating a burden on the liver without regular monitoring of liver enzymes and serum bilirubin as safety biomarkers. This study aims to review the pharmacological and safety profile of LF with a focus on the LF-induced hepatic injury from the perspective of pathophysiology and possible protective agents.
    Matched MeSH terms: Antiviral Agents/pharmacology
  2. Chan YS, Khoo KS, Sit NWW
    Int Microbiol, 2016 Sep;19(3):175-182.
    PMID: 28494087 DOI: 10.2436/20.1501.01.275
    Chikungunya virus is a reemerging arbovirus transmitted mainly by Aedes mosquitoes. As there are no specific treatments available, Chikungunya virus infection is a significant public health problem. This study investigated 120 extracts from selected medicinal plants for anti-Chikungunya virus activity. The plant materials were subjected to sequential solvent extraction to obtain six different extracts for each plant. The cytotoxicity and antiviral activity of each extract were examined using African monkey kidney epithelial (Vero) cells. The ethanol, methanol and chloroform extracts of Tradescantia spathacea (Commelinaceae) leaves showed the strongest cytopathic effect inhibition on Vero cells, resulting in cell viabilities of 92.6% ± 1.0% (512 μg/ml), 91.5% ± 1.7% (512 μg/ml) and 88.8% ± 2.4% (80 μg/ml) respectively. However, quantitative RT-PCR analysis revealed that the chloroform extract of Rhapis excelsa (Arecaceae) leaves resulted in the highest percentage of reduction of viral load (98.1%), followed by the ethyl acetate extract of Vernonia amygdalina (Compositae) leaves (95.5%). The corresponding 50% effective concentrations (EC50) and selectivity indices for these two extracts were 29.9 ± 0.9 and 32.4 ± 1.3 μg/ml, and 5.4 and 5.1 respectively. Rhapis excelsa and Vernonia amygdalina could be sources of anti-Chikungunya virus agents. [Int Microbiol 19(3):175-182 (2016)].
    Matched MeSH terms: Antiviral Agents/pharmacology*
  3. Leong CR, Funami K, Oshiumi H, Mengao D, Takaki H, Matsumoto M, et al.
    Oncotarget, 2016 10 18;7(42):68179-68193.
    PMID: 27626689 DOI: 10.18632/oncotarget.11907
    Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy.
    Matched MeSH terms: Antiviral Agents/pharmacology
  4. Kamal MA, Smith PF, Chaiyakunapruk N, Wu DBC, Pratoomsoot C, Lee KKC, et al.
    Br J Clin Pharmacol, 2017 07;83(7):1580-1594.
    PMID: 28176362 DOI: 10.1111/bcp.13229
    AIMS: A modular interdisciplinary platform was developed to investigate the economic impact of oseltamivir treatment by dosage regimen under simulated influenza pandemic scenarios.

    METHODS: The pharmacology module consisted of a pharmacokinetic distribution of oseltamivir carboxylate daily area under the concentration-time curve at steady state (simulated for 75 mg and 150 mg twice daily regimens for 5 days) and a pharmacodynamic distribution of viral shedding duration obtained from phase II influenza inoculation data. The epidemiological module comprised a susceptible, exposed, infected, recovered (SEIR) model to which drug effect on the basic reproductive number (R0 ), a measure of transmissibility, was linked by reduction of viral shedding duration. The number of infected patients per population of 100 000 susceptible individuals was simulated for a series of pandemic scenarios, varying oseltamivir dose, R0 (1.9 vs. 2.7), and drug uptake (25%, 50%, and 80%). The number of infected patients for each scenario was entered into the health economics module, a decision analytic model populated with branch probabilities, disease utility, costs of hospitalized patients developing complications, and case-fatality rates. Change in quality-adjusted life years was determined relative to base case.

    RESULTS: Oseltamivir 75 mg relative to no treatment reduced the median number of infected patients, increased change in quality-adjusted life years by deaths averted, and was cost-saving under all scenarios; 150 mg relative to 75 mg was not cost effective in low transmissibility scenarios but was cost saving in high transmissibility scenarios.

    CONCLUSION: This methodological study demonstrates proof of concept that the disciplines of pharmacology, disease epidemiology and health economics can be linked in a single quantitative framework.

    Matched MeSH terms: Antiviral Agents/pharmacology
  5. Rothan HA, Bahrani H, Shankar EM, Rahman NA, Yusof R
    Antiviral Res, 2014 Aug;108:173-80.
    PMID: 24929084 DOI: 10.1016/j.antiviral.2014.05.019
    Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2μg/ml, which is approximately half of the EC50 of PAP1 (23.7μg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.
    Matched MeSH terms: Antiviral Agents/pharmacology
  6. Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R
    Arch Virol, 2014 Apr;159(4):711-8.
    PMID: 24142271 DOI: 10.1007/s00705-013-1880-7
    Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  7. Kok YY, Chu WL, Phang SM, Mohamed SM, Naidu R, Lai PJ, et al.
    J Zhejiang Univ Sci B, 2011 May;12(5):335-45.
    PMID: 21528487 DOI: 10.1631/jzus.B1000336
    This study aimed to assess the inhibitory activities of methanol extracts from the microalgae Ankistrodesmus convolutus, Synechococcus elongatus, and Spirulina platensis against Epstein-Barr virus (EBV) in three Burkitt's lymphoma (BL) cell lines, namely Akata, B95-8, and P3HR-1. The antiviral activity was assessed by quantifying the cell-free EBV DNA using real-time polymerase chain reaction (PCR) technique. The methanol extracts from Ankistrodesmus convolutus and Synechococcus elongatus displayed low cytotoxicity and potent effect in reducing cell-free EBV DNA (EC(50)<0.01 µg/ml) with a high therapeutic index (>28000). After fractionation by column chromatography, the fraction from Synechococcus elongatus (SEF1) reduced the cell-free EBV DNA most effectively (EC(50)=2.9 µg/ml, therapeutic index>69). Upon further fractionation by high performance liquid chromatography (HPLC), the sub-fraction SEF1'a was most active in reducing the cell-free EBV DNA (EC(50)=1.38 µg/ml, therapeutic index>14.5). This study suggests that microalgae could be a potential source of antiviral compounds that can be used against EBV.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  8. Tan CW, Chan YF, Quah YW, Poh CL
    Antiviral Res, 2014 Jul;107:35-41.
    PMID: 24769243 DOI: 10.1016/j.antiviral.2014.04.004
    Enterovirus 71 (EV-71) infections are generally manifested as mild hand, foot and mouth disease, but have been reported to cause severe neurological complications with high mortality rates. Treatment options remain limited due to the lack of antivirals. Octaguanidinium-conjugated morpholino oligomers (vivo-MOs) are single-stranded DNA-like antisense agents that can readily penetrate cells and reduce gene expression by steric blocking of complementary RNA sequences. In this study, inhibitory effects of three vivo-MOs that are complementary to the EV-71 internal ribosome entry site (IRES) and the RNA-dependent RNA polymerase (RdRP) were tested in RD cells. Vivo-MO-1 and vivo-MO-2 targeting the EV-71 IRES showed significant viral plaque reductions of 2.5 and 3.5 log10PFU/ml, respectively. Both vivo-MOs reduced viral RNA copies and viral capsid expression in RD cells in a dose-dependent manner. In contrast, vivo-MO-3 targeting the EV-71 RdRP exhibited less antiviral activity. Both vivo-MO-1 and 2 remained active when administered either 4h before or within 6h after EV-71 infection. Vivo-MO-2 exhibited antiviral activities against poliovirus (PV) and coxsackievirus A16 but vivo-MO-1 showed no antiviral activities against PV. Both the IRES-targeting vivo-MO-1 and vivo-MO-2 inhibit EV-71 RNA translation. Resistant mutants arose after serial passages in the presence of vivo-MO-1, but none were isolated against vivo-MO-2. A single T to C substitution at nucleotide position 533 was sufficient to confer resistance to vivo-MO-1. Our findings suggest that IRES-targeting vivo-MOs are good antiviral candidates for treating early EV-71 infection, and vivo-MO-2 is a more favorable candidate with broader antiviral spectrum against enteroviruses and are refractory to antiviral resistance.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  9. Tan CW, Chan YF, Sim KM, Tan EL, Poh CL
    PLoS One, 2012;7(5):e34589.
    PMID: 22563456 DOI: 10.1371/journal.pone.0034589
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  10. Hanna GS, Benjamin MM, Choo YM, De R, Schinazi RF, Nielson SE, et al.
    J Nat Prod, 2024 Feb 23;87(2):217-227.
    PMID: 38242544 DOI: 10.1021/acs.jnatprod.3c00875
    The urgent need for new classes of orally available, safe, and effective antivirals─covering a breadth of emerging viruses─is evidenced by the loss of life and economic challenges created by the HIV-1 and SARS-CoV-2 pandemics. As frontline interventions, small-molecule antivirals can be deployed prophylactically or postinfection to control the initial spread of outbreaks by reducing transmissibility and symptom severity. Natural products have an impressive track record of success as prototypic antivirals and continue to provide new drugs through synthesis, medicinal chemistry, and optimization decades after discovery. Here, we demonstrate an approach using computational analysis typically used for rational drug design to identify and develop natural product-inspired antivirals. This was done with the goal of identifying natural product prototypes to aid the effort of progressing toward safe, effective, and affordable broad-spectrum inhibitors of Betacoronavirus replication by targeting the highly conserved RNA 2'-O-methyltransferase (2'-O-MTase). Machaeriols RS-1 (7) and RS-2 (8) were identified using a previously outlined informatics approach to first screen for natural product prototypes, followed by in silico-guided synthesis. Both molecules are based on a rare natural product group. The machaeriols (3-6), isolated from the genus Machaerium, endemic to Amazonia, inhibited the SARS-CoV-2 2'-O-MTase more potently than the positive control, Sinefungin (2), and in silico modeling suggests distinct molecular interactions. This report highlights the potential of computationally driven screening to leverage natural product libraries and improve the efficiency of isolation or synthetic analog development.
    Matched MeSH terms: Antiviral Agents/pharmacology
  11. Yap JKY, Moriyama M, Iwasaki A
    J Immunol, 2020 Jul 15;205(2):307-312.
    PMID: 32493814 DOI: 10.4049/jimmunol.2000513
    The inflammatory response to severe acute respiratory syndrome-related coronavirus 2 infection has a direct impact on the clinical outcomes of coronavirus disease 2019 patients. Of the many innate immune pathways that are engaged by severe acute respiratory syndrome-related coronavirus 2, we highlight the importance of the inflammasome pathway. We discuss available pharmaceutical agents that target a critical component of inflammasome activation, signaling leading to cellular pyroptosis, and the downstream cytokines as a promising target for the treatment of severe coronavirus disease 2019-associated diseases.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  12. Shamsian S, Nabipour I, Mohebbi G, Baghban N, Zare M, Zandi K, et al.
    Microb Pathog, 2024 Jan;186:106486.
    PMID: 38056601 DOI: 10.1016/j.micpath.2023.106486
    In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (μg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) μg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.
    Matched MeSH terms: Antiviral Agents/pharmacology
  13. Balakrishnan KN, Abdullah AA, Bala JA, Jesse FFA, Abdullah CAC, Noordin MM, et al.
    Infect Genet Evol, 2021 06;90:104783.
    PMID: 33640483 DOI: 10.1016/j.meegid.2021.104783
    OBJECTIVE: This study investigated the suitability of siRNA targeting specific genes that cause inhibition of virus replication in vitro especially for the virus that capable of crossing placenta and we employed a novel transplacental rat cytomegalovirus that mimics infection in human.

    METHODS: Six unique siRNAs with three each targeting different regions of IE2 (ie2a, ie2b and ie2c) and DNA polymerase (dpa, dpb and dpc) were prepared and tested for antiviral activities. The efficacy as an antiviral was determined in in-vitro by measuring TCID50 virus titer, severity of virus-induced cytopathic effect (CPE), intracellular viral genome loads by droplet digital PCR, the degree of apoptosis in siRNA-treated cells and relative expression of viral mRNA in infected Rat Embryo Fibroblast (REF) cells.

    FINDINGS: Remarkably, the siRNAs: dpa, dpb and IE2b, significantly reduced virus yield (approximately >90%) compared to control group at day 18 post infection (p.i). Changes in CPE indicated that DNA polymerase siRNAs were capable of protecting cells against CMV infection at day 14 p.i with higher efficiency than GCV (at the concentration of 300 pmol). Gene expression analysis revealed a marked down regulation of the targeted DNA polymerase gene (73.9%, 96.0% and 90.7% for dpa, dpb and dpc siRNA, respectively) and IE2 gene (50.8%, 49.9% and 15.8% for ie2a, ie2b and ie2c siRNA, respectively) when measured by RT-qPCR. Intracellular viral DNA loads showed a significant reduction for all the DNA polymerase siRNAs (dpa: 96%, dpb: 98% and dpc:92) compared to control group (P 

    Matched MeSH terms: Antiviral Agents/pharmacology*
  14. Mirza MU, Ahmad S, Abdullah I, Froeyen M
    Comput Biol Chem, 2020 Dec;89:107376.
    PMID: 32979815 DOI: 10.1016/j.compbiolchem.2020.107376
    Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb-palm-fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC50 value against Jurkat (9.67 μM) and MOTL-4 cells (11.8 μM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  15. Tan MC, Wong WY, Ng WL, Yeo KS, Mohidin TB, Lim YY, et al.
    PLoS One, 2017;12(1):e0170352.
    PMID: 28114392 DOI: 10.1371/journal.pone.0170352
    Influenza virus is estimated to cause 3-5 million severe complications and about 250-500 thousand deaths per year. Different kinds of anti-influenza virus drugs have been developed. However, the emergence of drug resistant strains has presented a big challenge for efficient antiviral therapy. Indole derivatives have been shown to exhibit both antiviral and anti-inflammatory activities. In this study, we adopted a cell-based system to screen for potential anti-IAV agents. Four indole derivatives (named 525A, 526A, 527A and 528A) were subjected to the antiviral screening, of which 526A was selected for further investigation. We reported that pre-treating cells with 526A protects cells from IAV infection. Furthermore, 526A inhibits IAV replication by inhibiting the expression of IAV genes. Interestingly, 526A suppresses the activation of IRF3 and STAT1 in host cells and thus represses the production of type I interferon response and cytokines in IAV-infected cells. Importantly, 526A also partially blocks the activation of RIG-I pathway. Taken together, these results suggest that 526A may be a potential anti-influenza A virus agent.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  16. Rajik M, Jahanshiri F, Omar AR, Ideris A, Hassan SS, Yusoff K
    Virol J, 2009;6:74.
    PMID: 19497129 DOI: 10.1186/1743-422X-6-74
    Avian influenza viruses (AIV) cause high morbidity and mortality among the poultry worldwide. Their highly mutative nature often results in the emergence of drug resistant strains, which have the potential of causing a pandemic. The virus has two immunologically important glycoproteins, hemagglutinin (HA), neuraminidase (NA), and one ion channel protein M2 which are the most important targets for drug discovery, on its surface. In order to identify a peptide-based virus inhibitor against any of these surface proteins, a disulfide constrained heptapeptide phage display library was biopanned against purified AIV sub-type H9N2 virus particles.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  17. Ben Hadda T, Berredjem M, Almalki FA, Rastija V, Jamalis J, Emran TB, et al.
    J Biomol Struct Dyn, 2022;40(19):9429-9442.
    PMID: 34033727 DOI: 10.1080/07391102.2021.1930161
    Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Antiviral Agents/pharmacology
  18. Jabanathan SG, Xuan LZ, Ramanathan B
    Methods Mol Biol, 2021;2296:279-302.
    PMID: 33977455 DOI: 10.1007/978-1-0716-1358-0_17
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in over 100 countries. The increase in prevalence would require a long-term measure to control outbreaks. Sanofi Pasteur has licensed the tetravalent dengue vaccine (Dengvaxia) in certain dengue endemic countries. However, the efficacy of the vaccine is limited against certain dengue serotypes and can only be used for individuals from the age from 9 to 45 years old. Over the years, there has been intense research conducted on the development of antivirals against dengue virus (DENV) through either inhibiting the virus replication or targeting the host cell mechanism to block the virus entry. However, no approved antiviral drug against dengue is yet available. In this chapter, we describe the dengue antiviral development workflow including (i) prophylactic, (ii) virucidal, and (iii) postinfection assays that are employed in the antiviral drug screening process against DENV. Further, we demonstrate different methods that can be used to enumerate the reduction in virus foci number including foci-forming unit reduction assay (FFURA), estimation of viral RNA copy number through quantitative real-time PCR, and a high-throughput enzyme linked immunosorbent assay (ELISA)-based quantification of virus particles.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  19. Muhamad A, Ho KL, Rahman MB, Tejo BA, Uhrín D, Tan WS
    Org Biomol Chem, 2015 Jul 28;13(28):7780-9.
    PMID: 26100394 DOI: 10.1039/c5ob00449g
    Hepatitis B virus (HBV) infection remains a health problem globally despite the availability of effective vaccines. In the assembly of the infectious virion, both the preS and S regions of the HBV large surface antigen (L-HBsAg) interact synergistically with the viral core antigen (HBcAg). Peptides preS and S based on the L-HBsAg were demonstrated as potential inhibitors to block the viral assembly. Therefore, the objectives of this study were to determine the solution structures of these peptides and study their interactions with HBcAg. The solution structures of these peptides were solved using (1)H, (13)C, and (15)N NMR spectroscopy. Peptide preS has several structured regions of β-turns at Ser7-Pro8-Pro9, Arg11-Thr12-Thr13 and Ser22-Thr23-Thr24 sequences whereas peptide S has only one structured region observed at Ser3-Asn4-His5. Both peptides contain bend-like structures surrounding the turn structures. Docking studies revealed that both peptides interacted with the immunodominant region of HBcAg located at the tip of the viral capsid spikes. Saturation Transfer Difference (STD) NMR experiments identified several aromatic residues in peptides preS and S that interact with HBcAg. This study provides insights into the contact regions of L-HBsAg and HBcAg at atomic resolution which can be used to design antiviral agents that inhibit HBV morphogenesis.
    Matched MeSH terms: Antiviral Agents/pharmacology
  20. Yusuf M, Mohamed N, Mohamad S, Janezic D, Damodaran KV, Wahab HA
    J Chem Inf Model, 2016 Jan 25;56(1):82-100.
    PMID: 26703840 DOI: 10.1021/acs.jcim.5b00331
    Increased reports of oseltamivir (OTV)-resistant strains of the influenza virus, such as the H274Y mutation on its neuraminidase (NA), have created some cause for concern. Many studies have been conducted in the attempt to uncover the mechanism of OTV resistance in H274Y NA. However, most of the reported studies on H274Y focused only on the drug-bound system, so the direct effects of the mutation on NA itself prior to drug binding still remain unclear. Therefore, molecular dynamics simulations of NA in apo form, followed by principal component analysis and interaction energy calculations, were performed to investigate the structural changes of the NA binding site as a result of the H274Y mutation. It was observed that the disruption of the NA binding site due to the H274Y mutation was initiated by the repulsive effect of Y274 on the 250-loop, which in turn altered the hydrogen-bonding network around residue 274. The rotated W295 side chain caused the upward movement of the 340-loop. Consequently, sliding box docking results suggested that the binding pathway of OTV was compromised because of the disruption of this binding site. This study also highlighted the importance of the functional group at C6 of the sialic acid mimicry. It is hoped that these results will improve the understanding of OTV resistance and shed some light on the design of a novel anti-influenza drug.
    Matched MeSH terms: Antiviral Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links