Displaying publications 61 - 80 of 289 in total

Abstract:
Sort:
  1. Ismail NH, Osman K, Zulkefli AF, Mokhtar MH, Ibrahim SF
    Molecules, 2021 Jun 02;26(11).
    PMID: 34199433 DOI: 10.3390/molecules26113346
    Gelam honey (GH) is a prized natural product synthesized from the nectar of flowers from Gelam trees (Melaleuca sp.). Gelam is an evergreen tree species that grows in tropical regions such as Malaysia. GH is a multifloral honey with proven antioxidant and anti-inflammatory properties. However, the beneficial effect of GH on female reproductive tissue has yet to be substantiated. Herein, we investigated the effects of GH administration on the uterine and vaginal epithelial thickness of sexually mature Sprague-Dawley rats. Epithelia thickness could be an indicator of an atrophy manifesting as a symptom of a cardio syndrome. Rats were given oral doses of GH in four groups for 14 days; the lowest dose was 0.2 g GH/kg body weight (bw) rat/day and the highest dose was 8 g GH/kg bw rat/day. The physicochemical characteristics of GH were assessed through hydroxymethylfurfural and moisture content determination and sugar identification. GH attenuated the atrophy of the uterine and vaginal epithelia and increased the thickness of the endometrial stroma and endometrial surface endothelial layer. However, the dissonance observed in the effect of GH administration on the vaginal epithelium requires further investigation. Nevertheless, GH may have a strong potential in attenuating uterine and vaginal atrophies.
    Matched MeSH terms: Biological Products/administration & dosage*; Biological Products/pharmacology; Biological Products/chemistry
  2. Al-Shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, et al.
    Molecules, 2021 Jul 26;26(15).
    PMID: 34361657 DOI: 10.3390/molecules26154504
    The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.
    Matched MeSH terms: Biological Products
  3. Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF
    Molecules, 2010 Feb 23;15(2):959-87.
    PMID: 20335956 DOI: 10.3390/molecules15020959
    By-products derived from food processing are attractive source for their valuable bioactive components and color pigments. These by-products are useful for development as functional foods, nutraceuticals, food ingredients, additives, and also as cosmetic products. Lycopene is a bioactive red colored pigment naturally occurring in plants. Industrial by-products obtained from the plants are the good sources of lycopene. Interest in lycopene is increasing due to increasing evidence proving its preventive properties toward numerous diseases. In vitro, in vivo and ex vivo studies have demonstrated that lycopene-rich foods are inversely associated to diseases such as cancers, cardiovascular diseases, diabetes, and others. This paper also reviews the properties, absorption, transportation, and distribution of lycopene and its by-products in human body. The mechanism of action and interaction of lycopene with other bioactive compounds are also discussed, because these are the crucial features for beneficial role of lycopene. However, information on the effect of food processing on lycopene stability and availability was discussed for better understanding of its characteristics.
    Matched MeSH terms: Biological Products/metabolism*
  4. Wiart C, Shorna AA, Rahmatullah M, Nissapatorn V, Seelan JSS, Rahman H, et al.
    Molecules, 2023 Jul 28;28(15).
    PMID: 37570687 DOI: 10.3390/molecules28155717
    Scorodocarpus borneensis (Baill.) Becc. is attracting increased attention as a potential commercial medicinal plant product in Southeast Asia. This review summarizes the current knowledge on the taxonomy, habitat, distribution, medicinal uses, natural products, pharmacology, toxicology, and potential utilization of S. borneesis in the pharmaceutical/nutraceutical/functional cosmetic industries. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1866 to 2022. A total of 33 natural products have been identified, of which 11 were organosulfur compounds. The main organosulfur compound in the seeds is bis-(methylthiomethyl)disulfide, which inhibited the growth of a broad spectrum of bacteria and fungi, T-lymphoblastic leukemia cells, as well as platelet aggregation. Organic extracts evoked anti-microbial, cytotoxic, anti-free radical, and termiticidal effects. S. borneensis and its natural products have important and potentially patentable pharmacological properties. In particular, the seeds have the potential to be used as a source of food preservatives, antiseptics, or termiticides. However, there is a need to establish acute and chronic toxicity, to examine in vivo pharmacological effects and to perform clinical studies.
    Matched MeSH terms: Biological Products*
  5. Vallavan V, Krishnasamy G, Zin NM, Abdul Latif M
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322256 DOI: 10.3390/molecules25245848
    Fungi are a rich source of secondary metabolites with several pharmacological activities such as antifungal, antioxidant, antibacterial and anticancer to name a few. Due to the large number of diverse structured chemical compounds they produce, fungi from the phyla Ascomycota, Basidiomycota and Muccoromycota have been intensively studied for isolation of bioactive compounds. Basidiomycetes-derived secondary metabolites are known as a promising source of antibacterial compounds with activity against Gram-positive bacteria. The continued emergence of antimicrobial resistance (AMR) poses a major challenge to patient health as it leads to higher morbidity and mortality, higher hospital-stay duration and substantial economic burden in global healthcare sector. One of the key culprits for AMR crisis is Staphylococcus aureus causing community-acquired infections as the pathogen develops resistance towards multiple antibiotics. The recent emergence of community strains of S. aureus harbouring methicillin-resistant (MRSA), vancomycin-intermediate (VISA) and vancomycin-resistant (VRSA) genes associated with increased virulence is challenging. Despite the few significant developments in antibiotic research, successful MRSA therapeutic options are still needed to reduce the use of scanty and expensive second-line treatments. This paper provides an overview of findings from various studies on antibacterial secondary metabolites from basidiomycetes, with a special focus on antistaphylococcal activity.
    Matched MeSH terms: Biological Products
  6. Dai R, Liu M, Nik Nabil WN, Xi Z, Xu H
    Molecules, 2021 Feb 19;26(4).
    PMID: 33669877 DOI: 10.3390/molecules26041113
    Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medicinal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mushrooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti-cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mechanisms underlying the potent bioactivities of several representative mushrooms in the Kingdom Fungi against various types of tumour.
    Matched MeSH terms: Biological Products/pharmacology; Biological Products/therapeutic use*; Biological Products/chemistry
  7. Muchtaridi M, Fauzi M, Khairul Ikram NK, Mohd Gazzali A, Wahab HA
    Molecules, 2020 Sep 01;25(17).
    PMID: 32882868 DOI: 10.3390/molecules25173980
    Over the years, coronaviruses (CoV) have posed a severe public health threat, causing an increase in mortality and morbidity rates throughout the world. The recent outbreak of a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the current Coronavirus Disease 2019 (COVID-19) pandemic that affected more than 215 countries with over 23 million cases and 800,000 deaths as of today. The situation is critical, especially with the absence of specific medicines or vaccines; hence, efforts toward the development of anti-COVID-19 medicines are being intensively undertaken. One of the potential therapeutic targets of anti-COVID-19 drugs is the angiotensin-converting enzyme 2 (ACE2). ACE2 was identified as a key functional receptor for CoV associated with COVID-19. ACE2, which is located on the surface of the host cells, binds effectively to the spike protein of CoV, thus enabling the virus to infect the epithelial cells of the host. Previous studies showed that certain flavonoids exhibit angiotensin-converting enzyme inhibition activity, which plays a crucial role in the regulation of arterial blood pressure. Thus, it is being postulated that these flavonoids might also interact with ACE2. This postulation might be of interest because these compounds also show antiviral activity in vitro. This article summarizes the natural flavonoids with potential efficacy against COVID-19 through ACE2 receptor inhibition.
    Matched MeSH terms: Biological Products/pharmacology*; Biological Products/chemistry
  8. Khan AH, Tye GJ, Noordin R
    Mol Biotechnol, 2020 Sep;62(9):401-411.
    PMID: 32749657 DOI: 10.1007/s12033-020-00265-9
    A broad range of cell lines with characteristic features are used as bio-factories to produce recombinant proteins for basic research and therapeutic purposes. Genetic engineering strategies have been used to manipulate the genome of mammalian cells, insects, and yeasts for heterologous expression. One reason is that the glycosylation pattern of the expression hosts differs somehow from mammalian cells, which may cause immunogenic reactions upon administration in humans. CRISPR-Cas9 is a simple, efficient, and versatile genome engineering tool that can be programmed to precisely make double-stranded breaks at the desired loci. Compared to the classical genome editing methods, a CRISPR-Cas9 system is an ideal tool, providing the opportunity to integrate or delete genes from the target organisms. Besides broadened applications, limited studies have used CRISPR-Cas9 for editing the endogenous pathways in expression systems for biopharmaceutical applications. In the present review, we discuss the use of CRISPR-Cas9 in expression systems to improve host cell lines, increase product yield, and humanize glycosylation pathways by targeting intrinsic genes.
    Matched MeSH terms: Biological Products*
  9. Ridzuan NRA, Rashid NA, Othman F, Budin SB, Hussan F, Teoh SL
    Mini Rev Med Chem, 2019;19(14):1134-1143.
    PMID: 30894108 DOI: 10.2174/1389557519666190320124438
    Cisplatin is a widely used antineoplastic agent for the treatment of metastatic tumors, advanced bladder cancer and many other solid tumors. However, at higher doses, toxicities such as nephrotoxicity may appear. Cisplatin leads to DNA damage and subsequently renal cell death. Besides that, oxidative stress is also implicated as one of the main causes of nephrotoxicity. Several studies showed that numerous natural products: ginseng, curcumin, licorice, honey and pomegranate were able to reduce the oxidative stress by restoring the levels of antioxidant enzymes and also at the same time act as an anti-inflammatory agent. Furthermore, pre-treatment with vitamin supplementation, such as vitamin C, E and riboflavin markedly decreased serum urea and increased the levels of antioxidant enzymes in the kidney even after cisplatin induction in cancer patients. These natural products possess potent antioxidant and anti-inflammatory medicinal properties, and they can be safely used as a supplementary regime or combination therapy against cisplatin-induced nephrotoxicity. The present review focused on the protective role of a few natural products which is widely used in folk medicines in cisplatin-induced nephrotoxicity.
    Matched MeSH terms: Biological Products
  10. Safdar MH, Hasan H, Afzal S, Hussain Z
    Mini Rev Med Chem, 2018;18(12):1047-1063.
    PMID: 29173165 DOI: 10.2174/1389557517666171123212039
    The immune system is an intricate and coordinated nexus serving as a natural defense to preclude internal and external pathogenic insults. The deregulation in the natural balance of immunological functions as a consequence of either over expression or under expression of immune cells tends to cause disruption of homeostasis in the body and may lead to development of numerous immune system disorders. Chalcone moieties (1,3-diphenyl-2-propen-1-one) have been well-documented as ideal lead compounds or precursors to design a wide range of pharmacologically active agents to down-regulate various immune disorders. Owing to their unique structural and molecular framework, these α, β-unsaturated carbonyl-based moieties have also gained remarkable recognition due to their other multifarious pharmacological properties including antifungal, anti-inflammatory, anti-malarial, antibacterial, anti-tuberculosis, and anticancer potential. Though a great number of methodologies are currently being employed for their synthesis, this review mainly focuses on the natural and synthetic chalcone derivatives that are exclusively synthesized via Claisen-Schmidt condensation reaction and their immunomodulatory prospects. We have critically reviewed the literature and provided convincing evidence for the promising efficacy of chalcone derivatives to modulate functioning of various innate and adaptive immune players including granulocytes, mast cells, monocytes, macrophages, platelets, dendritic cells, natural killer cells, and T-lymphocytes.
    Matched MeSH terms: Biological Products/chemical synthesis; Biological Products/pharmacology*; Biological Products/chemistry
  11. Mourya A, Shubhra, Bajwa N, Baldi A, Singh KK, Pandey M, et al.
    Mini Rev Med Chem, 2023;23(9):992-1032.
    PMID: 35546778 DOI: 10.2174/1389557522666220511140527
    Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.
    Matched MeSH terms: Biological Products/pharmacology; Biological Products/therapeutic use
  12. Tan LT, Mahendra CK, Yow YY, Chan KG, Khan TM, Lee LH, et al.
    Microbiologyopen, 2019 10;8(10):e859.
    PMID: 31199601 DOI: 10.1002/mbo3.859
    Microbial natural products serve as a good source for antioxidants. The mangrove-derived Streptomyces bacteria have been evidenced to produce antioxidative compounds. This study reports the isolation of Streptomyces sp. MUM273b from mangrove soil that may serve as a promising source of antioxidants and UV-protective agents. Identification and characterization methods determine that strain MUM273b belongs to the genus Streptomyces. The MUM273b extract exhibits antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging activities and also metal-chelating activity. The MUM273b extract was also shown to inhibit the production of malondialdehyde in metal-induced lipid peroxidation. Strong correlation between the antioxidant activities and the total phenolic content of MUM273b extract was shown. In addition, MUM273b extract exhibited cytoprotective effect on the UVB-induced cell death in HaCaT keratinocytes. Gas chromatography-mass spectrometry analysis detected phenolics, pyrrole, pyrazine, ester, and cyclic dipeptides in MUM273b extract. In summary, Streptomyces MUM273b extract portrays an exciting avenue for future antioxidative drugs and cosmeceuticals development.
    Matched MeSH terms: Biological Products/isolation & purification*; Biological Products/pharmacology
  13. Pushpamalar J, Sathasivam T, Gugler MC
    Methods Mol Biol, 2021;2211:171-182.
    PMID: 33336277 DOI: 10.1007/978-1-0716-0943-9_12
    Polysaccharides are excellent candidates for drug delivery applications as they are available in abundance from natural sources. Polysaccharides such as starch, cellulose, lignin, chitosan, alginate, and tragacanth gum are used to make hydrogels beads. Hydrogels beads are three-dimensional, cross-linked networks of hydrophilic polymers formed in spherical shape and sized in the range of 0.5-1.0 mm of diameter. Beads are formed by various cross-linking methods such as chemical and irradiation methods. Natural polymer-based hydrogels are biocompatible and biodegradable and have inherently low immunogenicity, which makes them suitable for physiological drug delivery approaches. The cross-linked polysaccharide-based hydrogels are environment-sensitive polymers that can potentially be used for the development of "smart" delivery systems, which are capable of control release of the encapsulated drug at a targeted colon site. This topic focuses on various aspects of fabricating and optimizing the cross-linking of polysaccharides, either by a single polysaccharide or mixtures and also natural-synthetic hybrids to produce polymer-based hydrogel vehicles for colon-targeted drug delivery.
    Matched MeSH terms: Biological Products/chemistry*
  14. Gunasekaran B, Shukor MY
    Methods Mol Biol, 2020;2089:245-250.
    PMID: 31773659 DOI: 10.1007/978-1-0716-0163-1_16
    The main strategy for lowering blood cholesterol levels is through the inhibition of the NADPH-dependent HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-CoA reductase). The enzyme catalyses the reduction of HMG-CoA to mevalonate and this process is inhibited by statins that form the bulk of the therapeutic agents to treat high cholesterol since the 1970s. Newer drugs that are safer than statins are constantly being developed. The inhibition of candidate drugs to HMG-CoA reductase remains the mainstay of drug development research. The determination of the enzyme activity is important for the correct assessment of potency of the enzyme as well as determining the inhibition of potential therapeutic agents from the plant and microbial extracts. Also, this chapter covers the use of the popular four-parameter logistics model that can yield accurate estimation of the IC50 values of therapeutic agents and their 95% confidence intervals.
    Matched MeSH terms: Biological Products/pharmacology
  15. Leelavathi, M., Mazlin, M.B., Adawiyah, J.
    Medicine & Health, 2013;8(1):0-0.
    MyJurnal
    Natural products are often perceived as safe due to the absence of artificial or chemical materials in its content. However, many are unaware that some of these compounds, albeit natural in existence, can cause harm. Cinnamon and lemon are two commonly used home remedies for acne. Both these naturally existing ingredients are capable of producing dermatitis upon contact with the human skin. The aim of this article is to create awareness among physicians that natural remedies are not free from harm hence, should look out for any possible untoward reactions that these products may cause. Physicians need to explore the possible use of homemade remedies to treat common or minor ailments during history taking as this information may not be given voluntarily. Early identification of the offending agent, adequate management and future avoidance could help prevent further episodes of contact dermatitis and its complications.
    Matched MeSH terms: Biological Products
  16. De Clercq E
    Med Res Rev, 2000 Sep;20(5):323-49.
    PMID: 10934347
    A large variety of natural products have been described as anti-HIV agents, and for a portion thereof the target of interaction has been identified. Cyanovirin-N, a 11-kDa protein from Cyanobacterium (blue-green alga) irreversibly inactivates HIV and also aborts cell-to-cell fusion and transmission of HIV, due to its high-affinity interaction with gp120. Various sulfated polysaccharides extracted from seaweeds (i.e., Nothogenia fastigiata, Aghardhiella tenera) inhibit the virus adsorption process. Ingenol derivatives may inhibit virus adsorption at least in part through down-regulation of CD4 molecules on the host cells. Inhibition of virus adsorption by flavanoids such as (-)epicatechin and its 3-O-gallate has been attributed to an irreversible interaction with gp120 (although these compounds are also known as reverse transcriptase inhibitors). For the triterpene glycyrrhizin (extracted from the licorice root Glycyrrhiza radix) the mode of anti-HIV action may at least in part be attributed to interference with virus-cell binding. The mannose-specific plant lectins from Galanthus, Hippeastrum, Narcissus, Epipac tis helleborine, and Listera ovata, and the N-acetylgl ucosamine-specific lectin from Urtica dioica would primarily be targeted at the virus-cell fusion process. Various other natural products seem to qualify as HIV-cell fusion inhibitors: the siamycins [siamycin I (BMY-29304), siamycin II (RP 71955, BMY 29303), and NP-06 (FR901724)] which are tricyclic 21-amino-acid peptides isolated from Streptomyces spp that differ from one another only at position 4 or 17 (valine or isoleucine in each case); the betulinic acid derivative RPR 103611, and the peptides tachyplesin and polyphemusin which are highly abundant in hemocyte debris of the horseshoe crabs Tachypleus tridentatus and Limulus polyphemus, i.e., the 18-amino-acid peptide T22 from which T134 has been derived. Both T22 and T134 have been shown to block T-tropic X4 HIV-1 strains through a specific antagonism with the HIV corecept or CXCR4. A number of natural products have been reported to interact with the reverse transcriptase, i.e., baicalin, avarol, avarone, psychotrine, phloroglucinol derivatives, and, in particular, calanolides (from the tropical rainforest tree, Calophyllum lanigerum) and inophyllums (from the Malaysian tree, Calophyllum inophyllum). The natural marine substance illimaquinone would be targeted at the RNase H function of the reverse transcriptase. Curcumin (diferuloylmethane, from turmeric, the roots/rhizomes of Curcuma spp), dicaffeoylquinic and dicaffeoylt artaric acids, L-chicoric acid, and a number of fungal metabolites (equisetin, phomasetin, oteromycin, and integric acid) have all been proposed as HIV-1 integrase inhibitors. Yet, we have recently shown that L-c hicoric acid owes its anti-HIV activity to a specific interaction with the viral envelope gp120 rather than integrase. A number of compounds would be able to inhibit HIV-1 gene expression at the transcription level: the flavonoid chrysin (through inhibition of casein kinase II, the antibacter ial peptides melittin (from bee venom) and cecropin, and EM2487, a novel substance produced by Streptomyces. (ABSTRACT TRUNCATED)
    Matched MeSH terms: Biological Products/therapeutic use*; Biological Products/chemistry
  17. Garba S, Sazili AQ, Mahadzir MF, Candyrine SCL, Jahromi MF, Ebrahimi M, et al.
    Meat Sci, 2019 Aug;154:61-68.
    PMID: 31004941 DOI: 10.1016/j.meatsci.2019.04.008
    This study investigated the carcass characteristics, physico-chemical properties, storage stability and cholesterol content of meat from goats fed with different levels of naturally-produced lovastatin used to mitigate enteric methane production. Twenty intact Saanen male goats of 5-6 months old with initial live weight of 25.8 ± 4.0 kg were randomly allotted into four dietary treatments containing 0 (Control), 2 (Low), 4 (Medium) and 6 mg (High) per kg live weight (LW) of naturally-produced lovastatin for 12 consecutive weeks. No differences were found in all the parameters measured except for full LW, hot and cold carcass weight, shear force, color and cholesterol content among the treatment groups. Aging had significant effects on all the parameters measured in this study except a* (redness) of meat. Meat samples in the Medium and High treatments were of higher lightness and yellowness, more tender and lower cholesterol levels. We conclude that, in addition to mitigate enteric methane emissions, dietary supplementation of naturally-produced lovastatin at 4 mg/kg LW could be a feasible feeding strategy to produce tender meat containing lower cholesterol.
    Matched MeSH terms: Biological Products/administration & dosage; Biological Products/pharmacology
  18. Pramanik S, Hanif ASM, Pingguan-Murphy B, Abu Osman NA
    Materials (Basel), 2012 Dec 21;6(1):65-75.
    PMID: 28809294 DOI: 10.3390/ma6010065
    In this work, untreated bovine cortical bones (BCBs) were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp) crystals. Rectangular specimens (10 mm × 10 mm × 3-5 mm) of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.
    Matched MeSH terms: Biological Products
  19. Nine MJ, Choudhury D, Hee AC, Mootanah R, Osman NAA
    Materials (Basel), 2014 Feb 10;7(2):980-1016.
    PMID: 28788496 DOI: 10.3390/ma7020980
    Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated) are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials.
    Matched MeSH terms: Biological Products
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links