Displaying publications 61 - 80 of 92 in total

Abstract:
Sort:
  1. Chang CH, Riazi M, Yunus MH, Osman S, Noordin R
    Diagn Microbiol Infect Dis, 2014 Dec;80(4):278-81.
    PMID: 25241641 DOI: 10.1016/j.diagmicrobio.2014.08.012
    This study evaluated 2 rapid leptospirosis serological tests, Leptorapide® (Linnodee, Northern Ireland) and VISITECT®-LEPTO (Omega Diagnostics, Scotland, UK), which are commonly used in Malaysia. A total of 183 samples comprised 113 sera from leptospirosis patients, and 70 sera from other infections and healthy controls were used. The leptospirosis sera were grouped into 2 serum panels, i.e., Group I (MAT+, PCR+) and Group II (MAT+). When inconclusive results were interpreted as positives, both tests showed lower diagnostic sensitivities (≤ 34%) with Group I sera, as compared to Group II sera (Leptorapide®, 93%; VISITECT®-LEPTO, 40%). When inconclusive results were interpreted as negatives, the 2 tests showed ~20% sensitivity with both serum panels. The diagnostic specificity of VISITECT®-LEPTO (94%) was superior to Leptorapide® (69%). Since both tests had misdiagnosed a large proportion of Group I patients and showed many inconclusive results among Group II patients, they have limited diagnostic value in detecting acute leptospirosis.
    Matched MeSH terms: Cross Reactions
  2. Norsyahida A, Riazi M, Sadjjadi SM, Muhammad Hafiznur Y, Low HC, Zeehaida M, et al.
    Parasite Immunol., 2013 May-Jun;35(5-6):174-9.
    PMID: 23448095 DOI: 10.1111/pim.12029
    Enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of IgG, IgG4 and IgE antibodies against Strongyloides stercoralis. A commercial ELISA (IVD Research, USA) was also used, and the sensitivities and specificities of the four assays were determined. Serum samples from 26 patients with S. stercoralis infection and 55 patients with other infections or no infection were analysed. Sensitivities of the IgG4 , IgG, IgE and IgG (IVD) assays were 76.9%, 84.6%, 7.7% and 84.6%, respectively, while the specificities were 92.7%, 81.8%, 100% and 83.6%, respectively. If filariasis samples were excluded, the specificities of the IgG4 -ELISA and both IgG-ELISAs increased to 100% and 98%, respectively. A significant positive correlation was observed between IgG- and IgG4 -ELISAs (r = 0.4828; P = 0.0125). IgG- and IgG- (IVD) ELISAs (r = 0.309) were positively correlated, but was not significant (P = 0.124). Meanwhile there was no correlation between IgG4 - and IgG- (IVD) ELISAs (r = 0.0042; P = 0.8294). Sera from brugian filariasis patients showed weak, positive correlation between the titres of antifilarial IgG4 and the optical densities of anti-Strongyloides IgG4 -ELISA (r = 0.4544, P = 0.0294). In conclusion, the detection of both anti-Strongyloides IgG4 and IgG antibodies could improve the serodiagnosis of human strongyloidiasis. Furthermore, patients from lymphatic filariasis endemic areas who are serologically diagnosed with strongyloidiasis should also be tested for filariasis.
    Matched MeSH terms: Cross Reactions
  3. Yunus MH, Arifin N, Balachandra D, Anuar NS, Noordin R
    Am J Trop Med Hyg, 2019 08;101(2):432-435.
    PMID: 31218996 DOI: 10.4269/ajtmh.19-0053
    The conventional method of detecting Strongyloides stercoralis in fecal samples has poor diagnostic sensitivity. Detection of Strongyloides-specific antibodies increases the sensitivity; however, most tests are ELISAs that use parasite extract which may cross-react with the sera of other helminth infections. To improve the serological diagnosis of strongyloidiasis, this study aimed at developing a sensitive and specific lateral flow rapid dipstick test. Two recombinant proteins, recombinant NIE (rNIE) and recombinant Ss1a (rSs1a), were used in preparing the dipstick, with gold-conjugated antihuman IgG4 as detector reagent. In parallel, the corresponding ELISA was performed. Both assays demonstrated diagnostic sensitivity of 91.3% (21/23) when tested with serum samples of patients with Strongyloides infection, and 100% specificity with 82 sera of asymptomatic (healthy) and those with other parasitic infections. The ELISA and dipstick test results were positively correlated to each other (r = 0.6114, P = 0.0019). The developed lateral flow dipstick test may improve the serodiagnosis of strongyloidiasis and merit further validation studies.
    Matched MeSH terms: Cross Reactions
  4. Rosmilah M, Shahnaz M, Zailatul HM, Noormalin A, Normilah I
    Trop Biomed, 2012 Sep;29(3):467-78.
    PMID: 23018510
    Crab is an important source of food allergen. Tropomyosin represents the main crab allergen and is responsible for IgE cross-reactivity between various species of crustaceans. Recently, other new crab allergens including arginine kinase have been identified. However, information on allergens of the local Portunidcrab is not available. Thus, the aim of this study was to identify the major allergens of Portunus pelagicus (blue swimming crab) using the allergenomics approach. Raw and cooked extracts of the crab were prepared from the crab meat. Protein profile and IgE binding pattern were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using sera from 30 patients with crab allergy. The major allergens of the crab were then identified by two-dimensional electrophoresis (2-DE), followed by mass spectrometry analysis of the peptide digests. The SDS-PAGE of raw extract revealed approximately 20 protein fractions over a wide molecular weight range, while cooked extract demonstrated fewer protein bands. The raw extract also demonstrated a higher number of IgE reactive bands than the cooked extract. A heat-resistant protein of 36 kDa has been identified as the major allergen in both raw and cooked extracts. In addition, a heat-sensitive protein of 41 kDa was also recognized as a major allergen in raw crab. The 2-DE gel profile of the raw extract demonstrated about >100 distinct proteins spots and immunoblotting of the 2-DE profile demonstrated at least 12 different major IgE reactive spots with molecular masses between 13 to 250 kDa and isoelectric point (pI) values ranging from 4.0 to 7.0. The 36 and 41 kDa proteins were identified as the crab tropomyosin and arginine kinase, respectively by mass spectrometry. Therefore, this study confirmed that tropomyosin and arginine kinase are the major allergens of the local Portunid crab, P. pelagicus.
    Matched MeSH terms: Cross Reactions/immunology
  5. Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, et al.
    Asian Pac J Allergy Immunol, 1993 Jun;11(1):45-52.
    PMID: 8216558
    An indirect ELISA was used to detect antibodies against outer membrane protein preparations (OMPs) from Salmonella typhi. Sera from patients with a definitive diagnosis of typhoid fever (TF) gave a mean absorbance reading, at 414 nm, of 1.52 +/- 0.23 as compared to 0.30 +/- 0.11 for sera from healthy individuals. This gave a positive to negative ratio of absorbance readings of approximately 5.1. Suspected TF patients (no isolation of S. typhi), with positive and negative Widal titers had mean absorbance readings of 1.282 +/00.46 and 0.25 +/- 0.19, respectively. Sera from patients with leptospirosis, rickettsial typhus, dengue fever, and other infections gave mean absorbances of 0.20 +/- 0.08, 0.24 +/- 0.08, 0.27 +/- 0.08, and 0.31 +/- 0.16, respectively. The sensitivity, specificity, positive and negative predictive values were 100%, 94%, 80% and 100%, respectively. The antibody response detected in the definitive TF cases was predominantly IgG in nature and no cross-reactivity was seen with OMP preparations extracted from E. coli. Variable reactivity was noted with OMP preparations obtained from other Salmonella spp. Three major OMPs are presented in the antigen preparation and strong binding of positive sera was detected to all three bands.
    Matched MeSH terms: Cross Reactions
  6. Tan NH, Ponnudurai G
    Toxicon, 1994 Oct;32(10):1265-9.
    PMID: 7846697
    Indirect ELISA shows that the antibodies to Calloselasma rhodostoma venom hemorrhagin (CR-HMG), thrombin-like enzyme (CR-TLE) and L-amino acid oxidase (CR-LAAO) exhibited strong to moderate cross-reactions with most crotalid and viperid venoms, but only anti-CR-LAAO cross-reacted with the elapid venoms. However, the indirect ELISA failed to detect some antigenic similarities demonstrable by cross-neutralization study. The double-sandwich ELISA for the three anti-C. rhodostoma venom components exhibited a much lower level of cross-reactions than the indirect ELISA.
    Matched MeSH terms: Cross Reactions
  7. Tan NH, Choy SK, Chin KM, Ponnudurai G
    Toxicon, 1994 Jul;32(7):849-53.
    PMID: 7940592
    Trimeresurus bite is a serious medical problem in Asia. However, at present only a few monospecific Trimeresurus antivenoms are available. Investigation of the cross-neutralization capacity of three Trimeresurus antivenoms indicates that the antivenoms exhibit broad cross-reactivity. A polyvalent Trimeresurus antivenom was also found to be effective in neutralization of the haemorrhagic, necrotizing and thrombin-like activities of heterologous Trimeresurus venoms.
    Matched MeSH terms: Cross Reactions
  8. Mathew A, Cheng HM, Sam CK, Prasad U
    Clin. Immunol. Immunopathol., 1994 May;71(2):164-8.
    PMID: 7514112
    Inhibition studies were carried out to study possible cross-reactivity between a peptide fragment of the Epstein-Barr virus nuclear antigen, EBNA-1, and keratin/collagen. The 20-amino acid peptide (pAG), derived from a glycine-alanine repeat region of EBNA-1, uniquely makes up about one-third of the viral protein and is a dominant IgA antigenic epitope in patients with nasopharyngeal carcinoma (NPC). A small percentage of normal human sera (NHS) also binds pAG and this reactivity is examined in this study. Ten percent (2/20) and 13.4% (2/15) of IgA-pAG-positive NPC sera and NHS, respectively, were significantly inhibited by keratin in a competitive ELISA system. Conversely, 31.6% (6/19) and 30.8% (4/13) of IgA-keratin-positive NPC sera and NHS, respectively, were significantly inhibited by pAG. This indicated minimum cross-reactivity between IgA serum antibodies to EBNA-1 and keratin. Using collagen as inhibitor, none of 18 and only 2/13 IgA-pAG-positive NPC sera and NHS, respectively, were inhibited. In the collagen ELISA system, only 2/19 (10.5%) and 4/25 (16%) of IgA-collagen-positive NPC sera and NHS, respectively, were inhibited with pAG. Therefore, cross-reactivity with collagen was also low. IgA-pAG-positive NHS may therefore not be a false positive phenomenon, but whether it may represent an early serological profile related to NPC carcinogenesis remains to be determined.
    Matched MeSH terms: Cross Reactions
  9. Ong LY, Pang T, Lim SH, Tan EL, Puthucheary SD
    J Med Microbiol, 1989 Jul;29(3):195-8.
    PMID: 2473209
    A simple adherence test to detect IgM antibodies in patients with typhoid is described. The test utilises the IgM-"capture" approach, in which the test serum is applied to microtitration plate wells previously coated with anti-human IgM, followed by application of a stained Salmonella typhi antigen suspension which shows adherence in positive cases. By this test, 58 (95%) of 61 sera from confirmed cases of typhoid possessed IgM antibodies to the H or O or both antigens of S. typhi. In patients for whom a diagnosis of typhoid was based only on a significant Widal-test titre, 31 (41%) of 76 sera had IgM antibodies to the H or O or both antigens of S. typhi. Some cross-reactivity of the IgM antibodies was detected, especially with the O antigens of S. paratyphi A and B. A total of 82 sera from non-typhoidal fevers (leptospirosis, typhus, dengue fever) showed no reactivity in this test. In normal sera there was no detectable IgM to the O antigen of S. typhi and only a small number (3.9%) had low levels of IgM to the H antigen. The significance and potential importance of this simple, sensitive, specific and economical test is discussed.
    Matched MeSH terms: Cross Reactions
  10. Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003609.
    PMID: 25774998 DOI: 10.1371/journal.pntd.0003609
    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.
    Matched MeSH terms: Cross Reactions
  11. Ng LF, Barr I, Nguyen T, Noor SM, Tan RS, Agathe LV, et al.
    BMC Infect Dis, 2006;6:40.
    PMID: 16512903
    Continuous outbreaks of the highly pathogenic H5N1 avian influenza A in Asia has resulted in an urgent effort to improve current diagnostics to aid containment of the virus and lower the threat of a influenza pandemic. We report here the development of a PCR-based assay that is highly specific for the H5N1 avian influenza A virus.
    Matched MeSH terms: Cross Reactions
  12. Lee LJ, Komarasamy TV, Adnan NAA, James W, Rmt Balasubramaniam V
    Front Immunol, 2021;12:750365.
    PMID: 34745123 DOI: 10.3389/fimmu.2021.750365
    Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the disease were found to be associated with severe neurological syndromes and congenital abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and transplacental transmission, adding to the complexity of Zika pathogenesis and clinical outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high degree of structural and sequence homology between Zika and its close cousin Dengue have raised questions on the interplay between ZIKV and the pre-existing immunity to other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in 2016 and has affected over 80 countries worldwide. The re-emergence of large-scale outbreaks in the future is certainly a possibility. To date, there has been no approved antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing an effective antiviral and vaccine is essential to prepare the world for a future Zika epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many different pathways in the human host and how it exploits the host immune response is required. For successful infection, the virus has developed elaborate mechanisms to escape the host response, including blocking host interferon response and shutdown of certain host cell translation. This review provides a summary on the key host factors that facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes antiviral innate immune response and involvement of adaptive immune response leading to immunopathology. We also discuss how ZIKV modulates the host immune response during sexual transmission and pregnancy to induce infection, how the cross-reactive immunity from other flaviviruses impacts ZIKV infection, and provide an update on the current status of ZIKV vaccine development.
    Matched MeSH terms: Cross Reactions
  13. Normaznah Y, Saniah K, Noor Rain A, Norazah A, Azizah MR, Sabiha P
    Malays J Pathol, 1998 Dec;20(2):95-8.
    PMID: 10879269
    Three monoclonal antibodies (McAb) were produced against soluble antigens of Legionella pneumophila serogroup 1 which was cultured on BCYE agar. The McAbs were all of the IgM isotype. The McAbs were used in the McAb-based ELISA for detection of circulating L. pneumophila antigens in 186 sera collected from patients with symptoms and signs suggestive of atypical pneumonia. The normal reference optical (OD) density value of each of the McAbs was determined using 44 sera collected from healthy blood donors. The antigen positivity rates for the McAbs 1C7.2B, 2B2.10F and 2B2.11E were 11.3%, 7.7% and 22.2% respectively. Antigen positivity of the McAb 2B2.10F was significantly higher in the younger age group (p < 0.05). There is no significant association between the antigen positivity with age and sex for all the McAbs. There was no cross-reaction demonstrated between the McAbs with other bacterial antigens.
    Matched MeSH terms: Cross Reactions
  14. Reed WM, Schrader DL
    Poult Sci, 1989 May;68(5):631-8.
    PMID: 2547209
    An avian pox virus was isolated from cutaneous proliferative lesions removed from greater hill mynahs (Gracula religiosa) imported from Malaysia. Cutaneous inoculation of specific pathogen-free chickens and bobwhite quail with the mynah pox virus resulted in severe proliferative cutaneous lesions similar to those seen in the naturally infected mynah birds. Microscopically, the reaction in the chickens and quail at sites of virus inoculation was characterized by marked epithelial hyperplasia with ballooning degeneration and formation of cytoplasmic inclusion bodies. Inoculation of conjunctival and oral mucosae of chickens by applying pox virus with a cotton swab did not result in gross or microscopic lesions. In cross-protection studies, chickens and bobwhite quail immunized with either quail, fowl, pigeon, turkey, or psittacine pox vaccines were not protected from challenge with mynah pox virus. Following vaccination of quail and chickens with mynah pox virus vaccine, there was no resistance to challenge by quail, fowl, pigeon, turkey, or psittacine pox viruses. Significant protection against development of lesions following inoculation with mynah pox virus was attained only when the homologous virus was used as a vaccine.
    Matched MeSH terms: Cross Reactions
  15. Tan CH, Liew JL, Tan NH, Ismail AK, Maharani T, Khomvilai S, et al.
    Toxicon, 2017 Dec 15;140:32-37.
    PMID: 29051104 DOI: 10.1016/j.toxicon.2017.10.014
    Arboreal pit vipers of the Trimeresurus complex group are medically important species in Indonesia (west of Wallace's line), but there is no specific antivenom produced in the country for treating related envenomation. Instead, the exiting trivalent Indonesian antivenom, Biosave® Serum Anti Bisa Ular (SABU, indicated for envenoming by Malayan pit viper, Javan spitting cobra and banded krait) is often misused to treat Trimeresus envenoming resulting in poor therapeutic outcome. Here, we investigated the cross-reactivity and neutralization capability of Thai Green Pit Viper Antivenom (GPVAV) against the venoms of four Indonesian Trimeresurus species. Consistently, the venoms of Trimeresurus (Trimeresurus) insularis, Trimeresurus (Trimeresurus) purpureomaculatus, Trimeresurus (Parias) hageni and Trimeresurus (Craspedocephalus) puniceus of Indonesia showed stronger immunoreactivity on ELISA to GPVAV than to Biosave®. The findings correlated with in vivo neutralization results, whereby GPVAV was far more effective than Biosave® in cross-neutralizing the lethality of the venoms by a potency of at least 13 to 80 times higher. The efficacy of GPVAV is partly attributable to its cross-neutralization of the procoagulant effect of the venoms, thereby mitigating the progression of venom-induced consumptive coagulopathy. The paraspecific effectiveness of GPVAV against Trimeresurus species envenoming in Indonesia await further clinical investigation.
    Matched MeSH terms: Cross Reactions/immunology
  16. Sheela DS, Chandramathi S, Suresh K
    Trop Biomed, 2020 Mar 01;37(1):210-217.
    PMID: 33612732
    Blastocystis sp. is an enteric protozoan parasite of humans and many animals. Blastocystis sp. subtype 3 (ST3) proves to be the highest frequency case in most populations around the world and it is further distinguished into symptomatic and asymptomatic isolates based on the clinical symptoms exhibited by infected individuals. Phenotypic and genotypic studies implicate the distinctiveness of this parasite which may describe its pathogenesis. However, the antigenic distinctiveness which describes the antibody mediated cell lysis of this parasite has not been explored. This study was aimed to identify the cross-reactivity and cytotoxicity effect between three isolates of symptomatic and asymptomatic Blastocystis sp. ST3 respectively. Antigen specificity and diversity of this parasite was performed by coculturing sera (10-fold dilution) obtained from mice immunised with Blastocystis sp. symptomatic and asymptomatic antigens and the respective Blastocystis sp. ST3 live cells through complement dependant cell cytotoxicity (CDC) assay. The results obtained has shown that, the sera (at 10-fold diluted concentration) from symptomatic and asymptomatic solubilised antigen immunised mice were able to specifically lyse the respective live parasites with an average percentage of 82% and 86% respectively. There were almost 50% crossreactivity observed between the three isolates of Blastocystis sp. ST3 from symptomatic and asymptomatic group proving high antigen diversity or rather low antigen specificity within the same group. However, there was only 17% cross-reactivity observed between the mice sera and parasitic cells of different groups (symptomatic vs asymptomatic isolates) suggesting high specificity between these two groups. We, for the first time have proven that through CDC analysis there were epitopes dissimilarities between Blastocystis sp. ST3 symptomatic and asymptomatic isolates which may allow the parasite to set up diverse immune modulations such as imbalanced Th1/Th2 responses in an infected host.
    Matched MeSH terms: Cross Reactions
  17. Leong PK, Tan CH, Sim SM, Fung SY, Sumana K, Sitprija V, et al.
    Acta Trop, 2014 Apr;132:7-14.
    PMID: 24384454 DOI: 10.1016/j.actatropica.2013.12.015
    Snake envenomation is a serious public health threat in many rural areas of Asia and Africa. Antivenom has hitherto been the definite treatment for snake envenomation. Owing to a lack of local production of specific antivenom, most countries in these regions fully depend on foreign supplies of antivenoms. Often, the effectiveness of the imported antivenoms against local medically important species has not been validated. This study aimed to assess cross-neutralizing capacity of a recently developed polyvalent antivenom, Hemato Polyvalent Snake Antivenom (HPAV), against venoms of a common viper and some pit vipers from Southeast Asia. Neutralisation assays showed that HPAV was able to effectively neutralize lethality of the common Southeast Asian viperid venoms examined (Calloselasma, Crytelytrops, Popeia, and Daboia sp.) except for Tropidolaemus wagleri venom. HPAV also effectively neutralized the procoagulant and hemorrhagic activities of all the venoms examined, corroboratively supporting the capability of HPAV in neutralizing viperid venoms which are principally hematoxic. The study also indicated that HPAV fully prevented the occurrence of hematuria and proteinuria in mice envenomed with Thai Daboia siamensis venom but was only partially effective against venoms of Myanmar D. siamensis. Thus, HPAV appears to be useful against its homologous venoms and venoms from Southeast Asian viperids including several medically important pit vipers belonging to the Trimeresurus complex. Nevertheless, the effectiveness of HPAV as a paraspecific antivenom for treatment of viperid envenomation in Southeast Asian region requires further assessment from future clinical trials.
    Matched MeSH terms: Cross Reactions*
  18. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH
    Acta Trop, 2015 Sep;149:86-93.
    PMID: 26026717 DOI: 10.1016/j.actatropica.2015.05.020
    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types of α-neurotoxins and cardiotoxins in sufficient amount, may also help to improve the efficacy and broaden the neutralization spectrum of the antivenom.
    Matched MeSH terms: Cross Reactions
  19. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Cross Reactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links