Displaying publications 61 - 80 of 112 in total

Abstract:
Sort:
  1. Hussain H, Yusoff MK, Ramli MF, Abd Latif P, Juahir H, Zawawi MA
    Pak J Biol Sci, 2013 Nov 15;16(22):1524-30.
    PMID: 24511695
    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.
    Matched MeSH terms: Fertilizers/analysis*
  2. Baghdadi A, Halim RA, Ghasemzadeh A, Ramlan MF, Sakimin SZ
    PeerJ, 2018;6:e5280.
    PMID: 30386686 DOI: 10.7717/peerj.5280
    Background: Corn silage is an important feed for intense ruminant production, but the growth of corn relies heavily on the use of chemical fertilizers. Sustainable crop production requires careful management of all nutrient sources available on a farm, particularly in corn-based cropping systems.

    Methods: Experiments were conducted to determine the appropriate technique of corn-legume intercropping in conjunction with the supplemental use of chemical fertilizers, organic manure, and biofertilizers (BFs). Acetylene reduction assays (ARAs) were also performed on corn and soybean roots.

    Results: Combining chemical fertilizers with chicken manure (CM) in a 50:50 ratio and applying 50% NPK+50% CM+BF produced fresh forage and dry matter (DM) yields that were similar to those produced in the 100% nitrogen (N), phosphorus (P), potassium (K) treatment. Among the lone fertilizer treatments, the inorganic fertilizer (100% NPK) treatment produced the highest DM yield (13.86 t/ha) of forage and outyielded the 100% CM (9.74 t/ha) treatment. However, when CM was combined with NPK, the resulting DM yield of forage (13.86 t/ha) was the same as that resulting from 100% NPK (13.68 t/ha). Compared with CM applications alone, combinations of NPK and CM applications resulted in increased plant height, crop growth rates (CGRs) and leaf area index (LAI), but the values of these parameters were similar to those resulting from 100% NPK application. Fertilizers in which the ratio was 50% CM+50% NPK or 50% CM+50% NPK+BF resulted in protein yields that were similar to those resulting from conventional fertilizers. Similarly, the CP content did not significantly differ between applications of the 100% NPK and 50% CM+50% NPK fertilizers. The use of BFs had no significant impact on improving either the yield or quality of forage fertilized with inorganic or organic fertilizer. Lactic acid responded differently to different fertilizer applications and was significantly higher in the fertilized plots than in the unfertilized plots. Compared with treatments of lone chemical and lone organic manure fertilizers, treatments involving applications of BF and a combination of BF and NPK or CM resulted in higher ARA values.

    Discussion: There is no simple and easy approach to increase biological nitrogen fixation (BNF) in grain legumes grown as part of a cropping system under realistic farm field conditions. Overall, evidence recorded from this study proves that, compared with corn monocrops combined with CM and chemical fertilizers, corn-soybean intercrops could increase forage yields and quality, produce higher total protein yields, and reduce the need for protein supplements and chemical fertilizers.

    Matched MeSH terms: Fertilizers
  3. Intan Soraya Shamsudin, Mohd Shamsul Anuar, Ahmad Husni Mohd. Hanif, Yus Aniza Yusof, Suraya Mohd Tahir
    MyJurnal
    This research was conducted to investigate the compaction performance and mechanical
    strength of compacted urea fertilizer in unlubricated and lubricated die systems. The
    ground urea 46% N fertilizer was compacted in a 13 mm flat-face cylindrical die set in
    both unlubricated and lubricated die systems with vegetable fatty acids and magnesium
    stearate as lubricants at various compaction stresses to produce urea fertilizer tablets. In
    conclusion, a lubricated die system reduces the frictional effects during the production of
    urea fertilizer tablets and also produces a mechanically stronger urea fertilizer tablet than
    those produced in an unlubricated die system. In addition, the vegetable fatty acids and
    magnesium stearate lubricants are found to improve the compaction performance of urea
    fertilizer tablet as well as its mechanical strength.
    Matched MeSH terms: Fertilizers
  4. Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, et al.
    Plant Biotechnol J, 2016 Apr;14(4):1095-8.
    PMID: 26360509 DOI: 10.1111/pbi.12467
    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
    Matched MeSH terms: Fertilizers
  5. Lawrencia D, Wong SK, Low DYS, Goh BH, Goh JK, Ruktanonchai UR, et al.
    Plants (Basel), 2021 Jan 26;10(2).
    PMID: 33530608 DOI: 10.3390/plants10020238
    Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the "tailing" effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.
    Matched MeSH terms: Fertilizers
  6. Rahman MM, Azirun SM, Boyce AN
    PLoS One, 2013;8(5):e62941.
    PMID: 23667546 DOI: 10.1371/journal.pone.0062941
    Soil contamination by copper (Cu) and lead (Pb) is a widespread environmental problem. For phytoextraction to be successful and viable in environmental remediation, strategies that can improve plant uptake must be identified. In the present study we investigated the use of nitrogen (N) fertilizer as an efficient way to enhance accumulation of Cu and Pb from contaminated industrial soils into amaranth, Indian mustard and sunflower.
    Matched MeSH terms: Fertilizers
  7. Nur Aainaa H, Haruna Ahmed O, Ab Majid NM
    PLoS One, 2018;13(9):e0204401.
    PMID: 30261005 DOI: 10.1371/journal.pone.0204401
    Efficient management of P fertilizers ensures good yield of crops and adequate food supply. In the acid soil of the tropics, soluble P is fixed by Al and Fe. Exploitation of the high CEC and pH of Clinoptilolite zeolite (CZ) could mitigate low soil pH and P fixation in acid soils. This study was undertaken to determine the effects of amending a weathered acid soil with CZ on: (i) soil P availability and other related soil chemical properties, and (ii) nutrient concentration, nutrient uptake, above-ground biomass, agronomic efficiency, and yield of Zea mays L. on a tropical acidic soil. Triple superphosphate (TSP), Egypt Rock phosphate (ERP), and Christmas Island Rock phosphate (CIRP) were used as P sources. The treatments evaluated were: (i) soil alone, (ii) 100% recommended fertilizer rate (NPK), and (iii) 75% fertilizer rate + Clinoptilolite zeolite. Selected soil chemical properties and P availability were determined before and after field trials. Zea mays L. above-ground biomass, nutrient concentration, nutrient uptake, agronomic efficiency, and fresh cob yield were also determined. Results revealed that the effects of treatments with and without CZ treatments on soil pH, P fractions, soil acidity, dry matter production, yield of maize, nutrient uptake, and agronomic efficiency were similar. Hence, suggesting CZ inclusion in the fertilization program of Zea mays L is beneficial in terms of reducing excessive or unbalanced use of chemical fertilizers due to reduction of fertilizers usage by 25%.
    Matched MeSH terms: Fertilizers
  8. Fallah M, Hadi H, Amirnia R, Hassanzadeh-Ghorttapeh A, Zuan ATK, Sayyed RZ
    PLoS One, 2021;16(12):e0261225.
    PMID: 34941919 DOI: 10.1371/journal.pone.0261225
    This study's primary purpose was to investigate the possible amelioration of limited irrigation conditions by mycorrhiza (AMF), vermicompost, and green manure for lingrain plants. This experiment was accomplished as a factorial based on the completely randomized design with three replications. The first factor was green manure (without green manure and with Trifolium pratense as green manure); the second factor consisted of Rhizophagus irregularis mycorrhiza, vermicompost, a combination of mycorrhiza and vermicompost and none of them, and also the third factor was irrigation regime (full irrigation and late-season water limitation). Green manure, vermicompost, and mycorrhiza single-use enhanced the plant's underwater limitation conditions compared to the control. However, vermicompost and green manure or mycorrhiza developed a positive synergistic effect on most traits. Combining green manure with the dual fertilizer (mycorrhiza + vermicompost) resulted in the vermicompost and mycorrhiza synergistic effects, especially under limited irrigation. Consequently, the combination of green manure, mycorrhiza, and vermicompost experienced the highest amount of leaf relative water content, root colonization, leaf nitrogen, chlorophyll a, chlorophyll b, carotenoids, antioxidant enzymes activity, grain yield, and oil yield, which would lead to more resistance of plants to limited irrigation conditions.
    Matched MeSH terms: Fertilizers/analysis*
  9. Yang F, Xu X, Wang W, Ma J, Wei D, He P, et al.
    PLoS One, 2017;12(5):e0177509.
    PMID: 28498839 DOI: 10.1371/journal.pone.0177509
    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear-parabolic-plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha-1 and the linear part was continuing until the yield reached about 60-70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean.
    Matched MeSH terms: Fertilizers/analysis
  10. Majeed Z, Nawazish S, Baig A, Akhtar W, Iqbal A, Muhammad Khan W, et al.
    PLoS One, 2023;18(2):e0278568.
    PMID: 36848343 DOI: 10.1371/journal.pone.0278568
    Green biomass is a renewable and biodegradable material that has the potential use to trap urea to develop a high-efficiency urea fertilizer for crops' better performance. Current work examined the morphology, chemical composition, biodegradability, urea release, soil health, and plant growth effects of the SRF films subjected to changes in the thickness of 0.27, 0.54, and 1.03 mm. The morphology was examined by Scanning Electron Microscopy, chemical composition was analyzed by Infrared Spectroscopy, and biodegradability was assessed through evolved CO2 and CH4 quantified through Gas Chromatography. The chloroform fumigation technique was used for microbial growth assessment in the soil. The soil pH and redox potential were also measured using a specific probe. CHNS analyzer was used to calculate the total carbon and total nitrogen of the soil. A plant growth experiment was conducted on the Wheat plant (Triticum sativum). The thinner the films, the more they supported the growth and penetration of the soil's microorganisms mainly the species of fungus possibly due to the presence of lignin in films. The fingerprint regions of the infrared spectrum of SRF films showed all films in soil changed in their chemical composition due to biodegradation but the increase in the thickness possibly provides resistance to the films' losses. The higher thickness of the film delayed the rate and time for biodegradation and the release of methane gas in the soil. The 1.03 mm film (47% in 56 days) and 0.54 mm film (35% in 91 days) showed the slowest biodegradability as compared to the 0.27 mm film with the highest losses (60% in 35 days). The slow urea release is more affected by the increase in thickness. The Korsymer Pappas model with release exponent value of < 0.5 explained the release from the SRF films followed the quasi-fickian diffusion and also reduced the diffusion coefficient for urea. An increase in the pH and decrease in the redox potential of the soil is correlated with higher total organic content and total nitrogen in the soil in response to amending SRF films with variable thickness. Growth of the wheat plant showed the highest average plant length, leaf area index and grain per plant in response to the increase in the film's thickness. This work developed an important knowledge to enhance the efficiency of film encapsulated urea that can better slow the urea release if the thickness is optimized.
    Matched MeSH terms: Fertilizers*
  11. Jani J, Yang YY, Lusk MG, Toor GS
    PLoS One, 2020;15(2):e0229715.
    PMID: 32109256 DOI: 10.1371/journal.pone.0229715
    Stormwater runoff is a leading cause of nitrogen (N) transport to water bodies and hence one means of water quality deterioration. Stormwater runoff was monitored in an urban residential catchment (drainage area: 3.89 hectares) in Florida, United States to investigate the concentrations, forms, and sources of N. Runoff samples were collected over 22 storm events (May to September 2016) at the end of a stormwater pipe that delivers runoff from the catchment to the stormwater pond. Various N forms such as ammonium (NH4-N), nitrate (NOx-N), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were determined and isotopic characterization tools were used to infer sources of NO3-N and PON in collected runoff samples. The DON was the dominant N form in runoff (47%) followed by PON (22%), NOx-N (17%), and NH4-N (14%). Three N forms (NOx-N, NH4-N, and PON) were positively correlated with total rainfall and antecedent dry period, suggesting longer dry periods and higher rainfall amounts are significant drivers for transport of these N forms. Whereas DON was positively correlated to only rainfall intensity indicating that higher intensity rain may flush out DON from soils and cause leaching of DON from particulates present in the residential catchment. We discovered, using stable isotopes of NO3-, a shifting pattern of NO3- sources from atmospheric deposition to inorganic N fertilizers in events with higher and longer duration of rainfall. The stable isotopes of PON confirmed that plant material (oak detritus, grass clippings) were the primary sources of PON in stormwater runoff. Our results demonstrate that practices targeting both inorganic and organic N are needed to control N transport from residential catchments to receiving waters.
    Matched MeSH terms: Fertilizers
  12. Islam MS, Kasim S, Amin AM, Alam MK, Khatun MF, Ahmed S, et al.
    PLoS One, 2023;18(8):e0285954.
    PMID: 37643156 DOI: 10.1371/journal.pone.0285954
    Foliar fertilization is a reliable technique for correcting a nutrient deficiency in plants caused by inadequate nutrient supply to the roots in acid soil. Soluble nutrients in banana pseudostem sap might be effective to supplement chemical fertilizers. However, the limited nutrients in sole banana pseudostem sap as foliar fertilization may not meet-up the nutritional demand of the crop. Field trials were, therefore, conducted with the combination of soil-applied fertilizers with foliar spray of banana pseudostem sap to increase nutrient uptake, yield, and quality of sweet corn planted in acidic soil. Three treatments viz., 100% recommended dose of fertilizers (RD) as control (T1), 75% of RD applied in soil with foliar application of non-enriched banana pseudostem sap (T2), and 50% RD applied in soil with foliar spray of enriched banana pseudostem sap (T3) were replicated four times. The combination of soil-applied fertilizer with foliar spray of enriched banana pseudostem sap (T3) showed a significant increase in leaf area index (11.3%), photosynthesis (12%), fresh cob yield (39%), and biomass of corn (29%) over control. Besides, the 50% RD of soil fertilization with foliar spray of enriched pseudostem sap increased nutrient uptake in addition to an increase in sugar content, phenolic content, soluble protein, and amino acids of corn. Considering the economic analysis, the highest net income, BCR (3.74) and MBCR (1.25) values confirmed the economic viability of T3 treatment over the T1. The results suggest that foliar spray of enriched banana pseudostem sap can be used as a supplementary source of nutrients to enhance nutrient uptake by corn while increasing yield and minimizing chemical fertilizer use in acid soil.
    Matched MeSH terms: Fertilizers*
  13. Raza A, Ejaz S, Saleem MS, Hejnak V, Ahmad F, Ahmed MAA, et al.
    PLoS One, 2021;16(12):e0261468.
    PMID: 34919599 DOI: 10.1371/journal.pone.0261468
    Nitrogen (N) is a macronutrient desired by crop plants in large quantities. However, hiking fertilizer prices need alternative N sources for reducing its requirements through appropriate management practices. Plant growth promoting rhizobacteria (PGPR) are well-known for their role in lowering N requirements of crop plants. This study assessed the impact of PGPR inoculation on growth, allometry and biochemical traits of chili under different N doses. Two PGPR, i.e., Azospirillum 'Er-20' (nitrogen fixing) and Agrobacterium 'Ca-18' (phosphorous solubilizing) were used for inoculation, while control treatment had no PGPR inoculation. Six N doses, i.e., 100, 80, 75, 70, 60 and 50% of the N required by chili were included in the study. Data relating to growth traits, biochemical attributes and yield related traits were recorded. Interaction among N doses and PGPR inoculation significantly altered all growth traits, biochemical attributes and yield related traits. The highest values of the recorded traits were observed for 100% N with and without PGPR inoculation and 75% N with PGPR inoculation. The lowest values of the recorded traits were noted for 50% N without PGPR inoculation. The PGPR inoculation improved the measured traits compared to the traits recorded noted in same N dose without PGPR inoculation. Results revealed that PGPR had the potential to lower 25% N requirement for chili. Therefore, it is recommended that PGPR must be used in chili cultivation to lower N requirements.
    Matched MeSH terms: Fertilizers/analysis
  14. Irfan SA, Razali R, KuShaari K, Mansor N
    Polymers (Basel), 2017 Mar 22;9(3).
    PMID: 30970794 DOI: 10.3390/polym9030111
    A mathematical model for the reaction-diffusion equation is developed to describe the nutrient release profiles and degradation of poly(lactic acid) (PLA)-coated controlled-release fertilizer. A multi-diffusion model that consists of coupled partial differential equations is used to study the diffusion and chemical reaction (autocatalytic degradation) simultaneously. The model is solved using an analytical-numerical method. Firstly, the model equation is transformed using the Laplace transformation as the Laplace transform cannot be inverted analytically. Numerical inversion of the Laplace transform is used by employing the Zakian method. The solution is useful in predicting the nutrient release profiles at various diffusivity, concentration of extraction medium, and reaction rates. It also helps in explaining the transformation of autocatalytic concentration in the coating material for various reaction rates, times of reaction, and reaction-multi diffusion. The solution is also applicable to the other biodegradable polymer-coated controlled-release fertilizers.
    Matched MeSH terms: Fertilizers
  15. Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH
    Rev Environ Contam Toxicol, 2017;242:183-217.
    PMID: 27734212 DOI: 10.1007/398_2016_11
    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods used to determine nitrogen use efficincy (NUE), determine NUE for the major cereals grown across large agroclimatic regions, determine the key factors that control NUE, and finally analyze various strategies available to improve the use efficiency of fertilizer nitrogen.
    Matched MeSH terms: Fertilizers
  16. Mohammad Mu'az Hashim, Mohd Khanif Yusop, Radziah Othman, Samsuri Abd. Wahid
    Sains Malaysiana, 2017;46:925-932.
    Implementation of sound fertilizer management in rice cultivation is essential in optimizing productivity and profitability. The use of controlled release fertilizer (CRF) to improve crop production in various cropping systems has been widely explored, with new approaches and materials continually being studied to produce new CRF. A field study was carried out to determine the efficiency of local CRFs on rice production and N uptake using MR220 CL1 rice variety. Ten different types of CRFs consisting of two groups namely biochar impregnated urea (BIU 300-5, BIU 300-10, BIU 700-5 and BIU 700-10) and palm stearin (PS) coated urea with nitrification inhibitors (PS, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150, PS+Cu and PS+Zn) were used as treatments. Plant height, SPAD reading, 1000-grain weight and harvest index (HI) showed significant improvement in rice treated with both biochar impregnated and palm stearin coated urea. With respect to grain yield, BIU 300-10, BIU 700-5, BIU 700-10, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150 and PS+Cu treatments significantly increased rice yield. The CRFs mostly showed significantly higher N uptake in rice, especially in rice grains, however, there was no significant difference among treatments in soil residual ammonium (NH4+-N). The newly-developed CRFs showed huge potential as an alternative for common urea, especially BIU 700-5, BIU 700-10, PS+DMPP-100 and PS+DMPP-50, in increasing rice grain yield. With proper approaches, these CRFs can contribute in improving rice production to provide sufficient food for ever increasing population.
    Matched MeSH terms: Fertilizers
  17. Jutarut Iewkittayakorn, Juntima Chungsiriporn, Prukraya Pongyeela
    Sains Malaysiana, 2017;46:1763-1769.
    Ammonium-enriched skim latex serum - used for absorption of contaminating ammonia gas - when composted with other rubber tree wastes, is promising as a good compost. The objective of this research was to utilize ammonium-enriched skim latex serum (S) as a raw composting ingredient after being combined with para sawdust (W1) and para rubber leaves (W2). Several ratios of S, W1 and W2 were experimented in a 15L composting vessel to determine the most effective compost. The best ratio was found to be 3:1:3 by weight at 12-day retention. The modified 30 L composting reactor employed with the derived optimum mixing conditions yielded N, P and K of 2.40, 1.51 and 14.84 %w/w. The growth of Brassica alboglabra after application of this compost combined with a chemical fertilizer generated the highest fresh weight (4.48 g/plant). Thus, compost from these wastes could be used as a fertilizer and logically should contribute to cost saving of waste disposal.
    Matched MeSH terms: Fertilizers
  18. Nazarudin MA, Tsan F, Adzmi Y, Normaniza O
    Sains Malaysiana, 2015;44:483-489.
    A study was conducted to determine the effects of a plant growth regulator (paclobutrazol, PBZ) and commercial
    fertilizer (Krista-K Plus) as a source of potassium nitrate (KNO3
    ) on the growth of Xanthostemon chrysantus. It was
    also attempted to investigate the anatomical changes in the leaf and stem after the treatment. Nine treatments, i.e.
    control (no PBZ and Krista-K Plus application), 0 PBZ gL-1 + 100 g Krista-K Plus, 0 PBZ gL-1 + 200 g Krista-K Plus,
    0.125 PBZ gL-1 + 0 g Krista-K Plus, 0.125 PBZ gL-1 + 100 g Krista-K Plus, 0.125 PBZ gL-1 + 200 g Krista-K Plus, 0.25
    PBZ gL-1 + 0 g Krista-K Plus, 0.25 PBZ gL-1 + 100 g Krista-K Plus and 0.25 PBZ gL-1 + 200 g Krista-K Plus, were
    tested. PBZ was soil drenched at the commencement of the study while Krista-K Plus was applied at three-month
    intervals. Plant growth performances such as tree height, diameter at breast height, canopy diameter and leaf area
    were recorded monthly throughout the study period. Stem and leaf samples were collected before the application
    of treatments and after six months of treatments for anatomical observation by using electron microscope. Plant
    height, diameter at breast height, crown diameter and leaf area were significantly reduced with the application of
    PBZ. Palisade parenchyma thickness was increased by 33.83% with 0.25 PBZ gL-1 + 200 g Krista-K Plus, while only
    2.44% increment recorded in the control tree. Xylem thickness in the stem was reduced by 21.81% after treated with
    the highest dosage of PBZ, while the control tree only had 1.78% increment. Spongy parenchyma thickness in the leaf
    was unaffected. However, palisade parenchyma was found the thickest after combined treatment with 0.25 PBZ gL-1
    + 200 g Krista-K Plus. Micrograph images of the cross-section of leaf lamina and stem showed that the cells were
    tightly arranged in response to the application of PBZ.
    Matched MeSH terms: Fertilizers
  19. Suratman S, Hussein A, Mohd Tahir N, Latif M, Mostapa R, Weston K
    Sains Malaysiana, 2016;45:551-558.
    This paper presents the results for surface water quality parameters measured in the Setiu Wetland, on the east coast of Malaysia, which feeds into the southern part of the South China Sea. There are no previous studies dealing with the seasonal and spatial variation of water quality in this area, despite numerous anthropogenic inputs into this ecologically and economically important wetland. The parameters measured were salinity, temperature, dissolved oxygen (DO), pH, biological oxygen demand (BOD) and total suspended solids (TSS). These parameters were sampled monthly from October 2009 to September 2010, during both the wet and dry seasons, at ten sampling stations distributed throughout the area. The physical water quality parameters were measured in situ whilst TSS and BOD were determined using the standard methods. A deterioration of water quality in the Setiu Wetland was observed in areas near agriculture and aquaculture activities. This was expected to be as a result of the use of fertilisers, waste from fish farm food and the waste products of aquaculture. The parameters measured showed lower mean values of surface salinity, temperature, DO, pH and TSS during the wet season relative to the dry season. In contrast, the concentration of BOD was high during the wet season and lowest in the dry season. Results obtained from this study clearly showed the surface physical water quality for the Setiu Wetland was highly influenced by anthropogenic activities and seasonal variation. Therefore, both factors must be considered to move towards proper management of this wetland.
    Matched MeSH terms: Fertilizers
  20. Shamshuddin J, Panhwar Q, Shazana M, Elisa A, Fauziah C, Naher U
    Sains Malaysiana, 2016;45:383-392.
    Acid sulfate soils are generally not suitable for the crop production unless they are efficiently improved. A study was conducted to improve the productivity of acid sulfate soils for rice cultivation using ground magnesium limestone (GML), basalt and organic fertilizer. The study was conducted on rice in laboratory, glasshouse and field. The pH of acid sulfate soils was low and exchangeable Al was very high which affected rice growth. The application of GML and basalt increased soil pH and reduced Al toxicity. GML required to ameliorate the soils for rice cultivation was 4 t ha-1. Basalt in combination with organic fertilizer was a good soil amendment, but required to be applied a few months ahead of rice cultivation. Due to GML or basalt application, rice plants grew well even though water pH was below 5. The highest rice yield obtained was 4.0 t ha-1 season-1 for Sulfaquepts and it was 7.5 t ha-1 season-1 for Sulfosaprists. In general, the application of GML or basalt in combination with organic fertilizer improved the productivity of acid sulfate soils and consequently enhanced rice yield.
    Matched MeSH terms: Fertilizers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links