Displaying publications 61 - 80 of 293 in total

Abstract:
Sort:
  1. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S
    Ann Endocrinol (Paris), 2010 Sep;71(4):291-6.
    PMID: 20398890 DOI: 10.1016/j.ando.2010.03.003
    Glucotoxicity contributes to beta-cell dysfunction through oxidative stress. Our previous study demonstrated that tualang honey ameliorated renal oxidative stress and produced hypoglycemic effect in streptozotocin (STZ)-induced diabetic rats. This present study investigated the hypothesis that hypoglycemic effect of tualang honey might partly be due to protection of pancreas against oxidative stress. Diabetes was induced by a single dose of STZ (60 mg/kg; ip). Diabetic rats were randomly divided into two groups and administered distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). Similarly, two groups of non-diabetic rats received distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). The animals were treated orally for 28 days. At the end of the treatment period, the honey-treated diabetic rats had significantly (p<0.05) reduced blood glucose levels [8.8 (5.8)mmol/L; median (interquartile range)] compared with the diabetic control rats [17.9 (2.6)mmol/L]. The pancreas of diabetic control rats showed significantly increased levels of malondialdehyde (MDA) and up-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Catalase (CAT) activity was significantly reduced while glutathione-S-transferase (GST) and glutathione reductase (GR) activities remained unchanged in the pancreas of diabetic rats. Tualang honey significantly (p<0.05) reduced elevated MDA levels. Honey treatment also restored SOD and CAT activities. These results suggest that hypoglycemic effect of tualang honey might be attributed to its antioxidative effect on the pancreas.
    Matched MeSH terms: Glutathione Peroxidase/metabolism; Glutathione Reductase/analysis; Glutathione Reductase/metabolism; Glutathione Transferase/analysis; Glutathione Transferase/metabolism
  2. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Pasupathi T
    Food Chem Toxicol, 2010 Oct;48(10):2688-94.
    PMID: 20600524 DOI: 10.1016/j.fct.2010.06.041
    Several environmental toxins with toxic effects to the bone marrow have been identified. Pathology associated with lead intoxication is due to the cellular damage mediated by free radicals. In the current study, we examined the effect of Etlingera elatior extract on lead-induced changes in the oxidative biomarkers and histology of bone marrow of rats. Sprague-Dawley rats were exposed to 500 ppm lead acetate in their drinking water for 14 days. E. elatior extract was treated orally (100mg/kg body weight) in combination with, or after lead acetate treatment. The results showed that there was a significant increase in lipid hydroperoxide, protein carbonyl content and a significant decrease in total antioxidants, super oxide dismutase, glutathione peroxidase and glutathione--S-transferase in bone marrow after lead acetate exposure. Treatment with E. elatior decreased lipid hydroperoxides and protein carbonyl contents and significantly increased total antioxidants and antioxidant enzymes. Treatments with E. elatior extract also reduced, lead-induced histopathological damage in bone marrow. In conclusion, these data suggest that E. elatior has a powerful antioxidant effect, and it protects the lead acetate-induced bone marrow oxidative damage in rats.
    Matched MeSH terms: Glutathione Peroxidase/metabolism; Glutathione Transferase/metabolism
  3. Lee SK, Arunkumar S, Sirajudeen KN, Singh HJ
    J Physiol Biochem, 2010 Dec;66(4):321-7.
    PMID: 20680541 DOI: 10.1007/s13105-010-0038-2
    Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.
    Matched MeSH terms: Glutathione/metabolism*; Glutathione Reductase/metabolism
  4. Shah MD, Iqbal M
    Food Chem Toxicol, 2010 Dec;48(12):3345-53.
    PMID: 20828599 DOI: 10.1016/j.fct.2010.09.003
    Diazinon (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl] phosphoro thioate), an organo-phosphate insecticide, has been used worldwide in agriculture and domestic for several years, which has led to a variety of negative effects in non target species including humans. However, its nephrotoxic effects and mechanism of action has not been fully elucidated so far. Therefore, the present study was aimed at evaluating the nephrotoxic effects of diazinon and its mechanism of action with special reference to its possible ROS generating potential in rats. Treatment of rats with diazinon significantly enhances renal lipid peroxidation which is accompanied by a decrease in the activities of renal antioxidant enzymes (e.g. catalase, glutathione peroxidise, glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione S-transferase) and depletion in the level of glutathione reduced. In contrast, the activities of renal γ-glutamyl transpeptidase and quinone reductase were increased. Parallel to these changes, diazinon treatment enhances renal damage as evidenced by sharp increase in blood urea nitrogen and serum creatinine. Additionally, the impairment of renal function corresponds histopathologically. In summary, our results indicate that diazinon treatment eventuates in decreased renal glutathione reduced, a fall in the activities of antioxidant enzymes including the enzymes involved in glutathione metabolism and excessive production of oxidants with concomitant renal damage, all of which are involved in the cascade of events leading to diazinon-mediated renal oxidative stress and toxicity. We concluded that in diazinon exposure, depletion of antioxidant enzymes is accompanied by induction of oxidative stress that might be beneficial in monitoring diazinon toxicity.
    Matched MeSH terms: Glutathione/metabolism; Glutathione Peroxidase/metabolism; Glutathione Transferase/metabolism
  5. Razali N, Aziz AA, Junit SM
    Genes Nutr, 2010 Dec;5(4):331-41.
    PMID: 21189869 DOI: 10.1007/s12263-010-0187-5
    Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT-PCR and real-time RT-PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp.
    Matched MeSH terms: Glutathione Transferase
  6. Kuppusamy UR, Tan JA
    West Indian Med J, 2011 Jan;60(1):3-8.
    PMID: 21809703
    Beta-thalassaemia major causes severe anaemia and patients with it may be transfusion-dependent for life. Regular blood transfusions cause iron-overload that leads to oxidative damage which can hasten mortality. The objective of this research was to study the oxidant-antioxidant indices in beta-thalassaemia major patients at the University of Malaya Medical Centre (UMMC) who were on desferrioxamine-chelation or without chelation therapy. Blood was collected from 39 Chinese patients and 20 controls. Plasma and peripheral blood mononuclear cell lysates (PBMC) were extracted and biochemical tests to evaluate oxidative stress were performed. Oxidative stress was evident in these patients as advanced oxidized protein products (AOPP) and lipid hydroperoxides were elevated, whereas glutathione peroxidase activity and the ferric reducing antioxidant power (FRAP) were reduced. The catalase activity in the patients' PBMC was elevated, possibly as a compensatory mechanism for the reduced glutathione peroxidase activity in both red blood cells and PBMC. The lower FRAP and higher AOPP levels in the non-chelated patients compared with the chelated patients were indicative of a lower oxidative stress level in the chelated patients. The ferritin levels in the chelated and non-chelated patients were high and the mean levels of liver enzyme activities in the majority of patients were elevated regardless of chelation therapy. In conclusion, this study indicates that desferrioxamine chelation therapy does not normalize ferritin level but attenuates oxidative damage and improves total antioxidant level in Malaysian Chinese beta-thalassaemia major patients.
    Matched MeSH terms: Glutathione Peroxidase/blood
  7. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    J Physiol Biochem, 2011 Jun;67(2):249-57.
    PMID: 21210316 DOI: 10.1007/s13105-010-0070-2
    Although melatonin lowers blood pressure in spontaneously hypertensive rats (SHR), its effect following antenatal and postpartum supplementation on the subsequent development of hypertension in SHR pups remains unknown. To investigate this, SHR dams were given melatonin in drinking water (10 mg/kg body weight/day) from day 1 of pregnancy until day 21 postpartum. After weaning, a group of male pups continued to receive melatonin till the age of 16 weeks (Mel-SHR), while no further melatonin was given to another group of male pups (Maternal-Mel-SHR). Controls received plain drinking water. Systolic blood pressure (SBP) was measured at 4, 6, 8, 12 and 16 weeks of age, after which the kidneys were collected for analysis of antioxidant enzyme profiles. SBP was significantly lower till the age of 8 weeks in Maternal-Mel-SHR and Mel-SHR than that in the controls, after which no significant difference was evident in SBP between the controls and Maternal-Mel-SHR. SBP in Mel-SHR was lower than that in controls and Maternal-Mel-SHR at 12 and 16 weeks of age. Renal glutathione peroxidase (GPx) and glutathione s-transferase (GST) activities, levels of total glutathione and relative GPx-1 protein were significantly higher in Mel-SHR. GPx protein was however significantly higher in Mel-SHR. No significant differences were evident between the three groups in the activities of superoxide dismutase, catalase and glutathione reductase. In conclusion, it appears that while antenatal and postpartum melatonin supplementation decreases the rate of rise in blood pressure in SHR offspring, it however does not alter the tendency of offspring of SHR to develop hypertension.
    Matched MeSH terms: Glutathione Peroxidase/metabolism; Glutathione Transferase/metabolism
  8. Ibrahim MH, Jaafar HZ
    Molecules, 2011 Jul 20;16(7):6068-81.
    PMID: 21775936 DOI: 10.3390/molecules16076068
    A randomized complete randomized design (RCBD) 3 by 3 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), gluthatione (GSH), oxidized gluthatione (GSSG), soluble carbohydrate and antioxidant activities of the Malaysian medicinal herb Labisia pumila Blume under three levels of CO₂ enrichment (400, 800 and 1,200 µmol mol⁻¹) for 15 weeks. It was found that the treatment effects were solely contributed by interaction of CO₂ levels and secondary metabolites distribution in plant parts, GSH, GSHH and antioxidant activities (peroxyl radicals (ROO), superoxide radicals (O₂), hydrogen peroxide (H₂O₂) and hydroxyl radicals (OH). The records of secondary metabolites, glutahione, oxidized gluthathione and antioxidant activities in a descending manner came from the leaf enriched with 1,200 µmol/mol CO₂ > leaf 800 µmol/mol CO₂ > leaf 400 µmol/mol CO₂ > stem 1,200 µmol/mol CO₂ > stem 800 µmol/mol CO₂ > stem 400 µmol/mol CO₂ > root 1,200 µmol/mol CO₂ > root 800 µmol/mol CO₂ > root 400 µmol/mol CO₂. Correlation analyses revealed strong significant positive coefficients of antioxidant activities with total phenolics, flavonoids, GSH and GSHH indicating that an increase in antioxidative activity of L. pumila under elevated CO₂ might be up-regulated by the increase in production of total phenolics, total flavonoids, GSH, GSHH and soluble sugar. This study implied that the medicinal potential of herbal plant such as L. pumila can be enhanced under elevated CO₂, which had simultaneously improved the antioxidative activity that indicated by the high oxygen radical absorbance activity against ROO, O₂, H₂O₂, and OH radicals.
    Matched MeSH terms: Glutathione/metabolism; Glutathione Disulfide/metabolism
  9. Ku CS, Teo SM, Naidoo N, Sim X, Teo YY, Pawitan Y, et al.
    J Hum Genet, 2011 Aug;56(8):552-60.
    PMID: 21677662 DOI: 10.1038/jhg.2011.54
    Copy number variations can be identified using newer genotyping arrays with higher single nucleotide polymorphisms (SNPs) density and copy number probes accompanied by newer algorithms. McCarroll et al. (2008) applied these to the HapMap II samples and identified 1316 copy number polymorphisms (CNPs). In our study, we applied the same approach to 859 samples from three Singapore populations and seven HapMap III populations. Approximately 50% of the 1291 autosomal CNPs were found to be polymorphic only in populations of non-African ancestry. Pairwise comparisons among the 10 populations showed substantial differences in the CNPs frequencies. Additionally, 698 CNPs showed significant differences with false discovery rate (FDR)<0.01 among the 10 populations and these loci overlap with known disease-associated or pharmacogenetic-related genes such as CFHR3 and CFHR1 (age related macular degeneration), GSTTI (metabolism of various carcinogenic compounds and cancers) and UGT2B17 (prostate cancer and graft-versus-host disease). The correlations between CNPs and genome-wide association studies-SNPs were investigated and several loci, which were previously unreported, that may potentially be implicated in complex diseases and traits were found; for example, childhood acute lymphoblastic leukaemia, age-related macular degeneration, breast cancer, response to antipsychotic treatment, rheumatoid arthritis and type-1 diabetes. Additionally, we also found 5014 novel copy number loci that have not been reported previously by McCarroll et al. (2008) in the 10 populations.
    Matched MeSH terms: Glutathione Transferase/genetics
  10. Haleagrahara N, Siew CJ, Mitra NK, Kumari M
    Neurosci Lett, 2011 Aug 15;500(2):139-43.
    PMID: 21704673 DOI: 10.1016/j.neulet.2011.06.021
    An increasing large body of research on Parkinson's disease (PD) has focused on the understanding of the mechanisms behind the potential neuro protection offered by antioxidants and iron chelating agents. In this study, the protective effect of the bioflavonoid quercetin on 6-hydroxydopamine (6-OHDA)-induced model of PD was investigated. PD was induced by a single intracisternal injection of 6-hydroxydopamine (300μg) to male Sprague-Dawley rats. Quercetin treatment (30mg/kg body weight) over 14 consecutive days markedly increased the striatal dopamine and antioxidant enzyme levels compared with similar measurements in the group treated with 6-OHDA alone. There was a significant decrease in protein carbonyl content in the striatum compared with that of rats that did not receive quercetin. A significant increase in neuronal survivability was also found with quercetin treatment in rats administered 6-OHDA. In conclusion, treatment with quercetin defended against the oxidative stress in the striatum and reduced the dopaminergic neuronal loss in the rat model of PD.
    Matched MeSH terms: Glutathione/metabolism
  11. Karami A, Christianus A, Ishak Z, Syed MA, Courtenay SC
    Ecotoxicol Environ Saf, 2011 Sep;74(6):1558-66.
    PMID: 21636131 DOI: 10.1016/j.ecoenv.2011.05.012
    This study investigated the dose-dependent and time-course effects of intramuscular (i.m.) and intraperitoneal (i.p.) injection of benzo[a]pyrene (BaP) on the biomarkers EROD activity, GST activity, concentrations of BaP metabolites in bile, and visceral fat deposits (Lipid Somatic Index, LSI) in African catfish (Clarias gariepinus). Intraperitoneal injection resulted in 4.5 times higher accumulation of total selected biliary FACs than i.m. injection. Hepatic GST activities were inhibited by BaP via both injection methods. Dose-response relationships between BaP injection and both biliary FAC concentrations and hepatic GST activities were linear in the i.p. injected group but nonlinear in the i.m. injected fish. Hepatic EROD activity and LSI were not significantly affected by BaP exposure by either injection route. We conclude that i.p. is a more effective route of exposure than i.m. for future ecotoxicological studies of PAH exposure in C. gariepinus.
    Matched MeSH terms: Glutathione/metabolism; Glutathione Transferase/metabolism
  12. Tudave D, Radhakrishnan A, Chakravarthi S, Haleagrahara N
    Inflamm Res, 2011 Oct;60(10):897-907.
    PMID: 21633874 DOI: 10.1007/s00011-011-0349-y
    OBJECTIVES: The study investigated the effect of collagen-induced arthritis in Dark Agouti (DA) rats on the level of C-reactive protein and inflammatory cytokine tumour necrosis factor-alpha (TNF-α).

    SUBJECTS: Female Dark Agouti (DA) rats.

    METHODS: Three different dosages of (2 mg/kg of body weight, 3 mg/kg of body weight and 4 mg/kg of body weight) collagen and complete Freund's adjuvant suspension were tested. After 45 days, serum C-reactive protein, TNF-α, superoxide dismutase and total glutathione assays were done. Radiographic and histopathological changes in the joints were compared.

    RESULTS: All three groups showed signs of arthritic changes, confirmed by histopathological and radiographic changes. Severe arthritic changes were seen in the rats injected with 4 mg/kg of body weight of collagen. There was a significant increase in C-reactive protein, TNF-α, super oxide dismutase and total glutathione levels in the plasma in arthritis rats and the changes were more significant with 4 mg/kg of collagen.

    CONCLUSION: These results demonstrated that the optimal dose to inject to experimental animals in order to get server arthritic changes was 4 mg/kg of collagen with complete Freund's adjuvant suspension. Severe arthritis changes induced significant elevation in plasma C-reactive protein and TNF-α levels.

    Matched MeSH terms: Glutathione/metabolism
  13. Shuid AN, Mohamad S, Muhammad N, Fadzilah FM, Mokhtar SA, Mohamed N, et al.
    J Orthop Res, 2011 Nov;29(11):1732-8.
    PMID: 21547940 DOI: 10.1002/jor.21452
    Fracture healing is a complex process, which is more complicated if the bone is osteoporotic. One of the vitamin E isomers, α-tocopherol, has been found to prevent osteoporosis and improve bone fracture healing but its role in the healing of osteoporotic fractures is still unclear. We carried out a study on the effects of α-tocopherol supplementation on osteoporotic fracture healing using an ovariectomized rat model, whereby we focused on the early phase of fracture healing, that is, the phase with excessive production of free radicals. Twenty-four female Sprague-Dawley rats were divided into three groups: sham-operated (SO), ovariectomized-control (OVC), and ovariectomized + α-tocopherol supplementation (ATF) groups. The right femora of all the rats were fractured at mid-diaphysis and K-wires were inserted for internal fixation. After 2 weeks of treatment, the rats were euthanized and the femora were dissected out for measurement of callous volume by CT-scan and radiological staging of callous formation and fracture healing. The oxidative parameters of the fractured femora were also measured. The results showed that the callous volume and callous staging were not different between the groups. However, the fracture healing stage of the OVC group was lower than the SO group, while α-tocopherol supplementation in the ATF group had improved the healing until it was comparable to the SO group. The activities of the anti-oxidatant enzymes, superoxide dismutase, and glutathione peroxidase in the ATF group were found to be significantly higher than in the OVC group. In conclusion, α-tocopherol improved fracture healing but had no effect on the callous volume and staging. The improvement in fracture healing may be due to the increased activities of the anti-oxidatant enzymes in the bone during the early phase of fracture healing of osteoporotic bone.
    Matched MeSH terms: Glutathione Peroxidase/metabolism
  14. Eshkoor SA, Ismail P, Rahman SA, Moin S
    Arh Hig Rada Toksikol, 2011 Dec;62(4):291-8.
    PMID: 22202462 DOI: 10.2478/10004-1254-62-2011-2088
    The aim of our study was to see the effects of GSTP1 polymorphism on biomarkers of ageing, including micronuclei (MN), comet tail length, and relative telomere length in automobile repair workers, who are exposed to a broad spectrum of potential mutagens. The analysis was performed on buccal cells collected from occupationally exposed and non-exposed (control) subjects. Samples were analysed using cytogenetic and molecular methods, including restriction fragment length polymorphism (RFLP), MN test, comet assay, and real-time PCR. The results confirmed the DNA damaging effects of substances used in the mechanical workshops, but did not confirm the influence of GSTP1 gene polymorphism on DNA damage. However, further studies on both occupationally exposed and control populations are needed to understand the relationship between GSTP1 polymorphism and genome damage.
    Matched MeSH terms: Glutathione S-Transferase pi/genetics*
  15. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    Clin Exp Pharmacol Physiol, 2011 Dec;38(12):854-9.
    PMID: 21973174 DOI: 10.1111/j.1440-1681.2011.05624.x
    1. The hypotensive effect of cross-fostering in spontaneously hypertensive rats (SHR) is thought to involve adjustments in renal function. However, its association with renal anti-oxidant/oxidant balance during cross-fostering is not known. 2. The present study examined the effect of cross-fostering and in-fostering of 1-day-old offspring between SHR and Wistar-Kyoto (WKY) dams on renal anti-oxidant/oxidant status and systolic blood pressure (SBP). Renal anti-oxidant/oxidant status and SBP were determined in the offspring from 4-16 weeks of age. 3. Cross-fostered SHR had significantly lower SBP than in-fostered SHR at 6, 8 and 12 weeks, but not at 16 weeks (127 ± 1 vs 144 ± 2, 138 ± 1 vs 160 ± 1, 174 ± 2 vs 184 ± 2 and 199 ± 2 vs 194 ± 3 mmHg at 6, 8, 12 and 16 weeks, respectively). No differences in SBP were evident between cross-fostered and in-fostered WKY rats. There were no significant differences in levels of thiobarbituric acid-reactive substances (TBARS), protein carbonyl and total anti-oxidant status (TAS) or superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione S-transferase and glutathione reductase activity between cross-fostered and in-fostered SHR or WKY offspring. However, compared with WKY rats, catalase activity was higher at 6 and 16 weeks, TAS was higher at 16 weeks and GPx activity and TBARS were lower at 16 weeks in SHR. 4. It appears that cross-fostering of SHR offspring to WKY dams during the early postnatal period causes a transient delay in the rise in blood pressure in SHR and that this does not involve the renal anti-oxidant/oxidant system.
    Matched MeSH terms: Glutathione Peroxidase/analysis; Glutathione Peroxidase/metabolism*; Glutathione Reductase/analysis; Glutathione Reductase/metabolism*; Glutathione Transferase/analysis; Glutathione Transferase/metabolism*
  16. Haleagrahara N, Julian V, Chakravarthi S
    Cardiovasc Toxicol, 2011 Dec;11(4):373-81.
    PMID: 21796404 DOI: 10.1007/s12012-011-9132-0
    This study investigated the cardioprotective effect of N-acetylcysteine (NAC) on isoproterenol (ISO)-induced cardiotoxicity in rats. Male Sprague-Dawley rats were divided into control, NAC alone (100 mg/kg BW orally for 14 days), ISO-control (85 mg/kg BW), and ISO with NAC (for 14 days). Serum creatine kinase-MB and Lactate dehydrogenase were measured. From the heart homogenate lipid hydroperoxides (LPO), superoxide dismutase (SOD), total glutathione (GSH), and 8-isoprostane (IP) were measured. Histopathological examination of the heart was also carried out. There was a significant increase (P 
    Matched MeSH terms: Glutathione/metabolism
  17. Mohamed M, Sulaiman SA, Jaafar H, Sirajudeen KN
    Int J Mol Sci, 2011;12(9):5508-21.
    PMID: 22016605 DOI: 10.3390/ijms12095508
    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.
    Matched MeSH terms: Glutathione Peroxidase/metabolism
  18. Karen-Ng LP, Marhazlinda J, Rahman ZA, Yang YH, Jalil N, Cheong SC, et al.
    Asian Pac J Cancer Prev, 2011;12(5):1161-6.
    PMID: 21875259
    Dietary isothiocyanates (ITCs) found in cruciferous vegetables (Brassica spp.) has been reported to reduce cancer risk by inducing phase II conjugating enzymes, in particular glutathione S-transferases (GSTs). This case-control study was aimed at determining associations between dietary ITCs, GSTs polymorphisms and risk habits (cigarette smoking, alcohol drinking and betel-quid chewing) with oral cancer in 115 cases and 116 controls. Information on dietary ITC intake from cruciferous vegetables was collected via a semi-quantitative food frequency questionnaire (FFQ). Peripheral blood lymphocytes were obtained for genotyping of GSTM1, GSTT1 and GSTP1 using PCR multiplex and PCR-RFLP. Chi-square and logistic regression were performed to determine the association of ITC and GSTs polymorphism and risk of oral cancer. When dietary ITC was categorized into high (greater than/equal to median) and low (less than median) intake, there was no significant difference between cases and control group. Logistic regression yielding odd ratios resulted in no significant association between dietary ITC intake, GSTM1, GSTT1 or GSTP1 genotypes with oral cancer risk overall. However, GSTP1 wild-type genotype was associated with later disease onset in women above 55 years of age (p= 0.017). Among the men above 45 years of age, there was clinical significant difference of 17 years in the age of onset of oral cancer between GSTP1 wild-type + low ITC intake and GSTP1 polymorphism + high ITC intake (p= 0.001). Similar conditions were also seen among men above 45 years of age with risk habits like drinking and chewing as the earlier disease onset associated with GSTP1 polymorphism and high ITC intake (p< 0.001). This study suggests that combination effects between dietary ITCs, GSTP1 polymorphism and risk habits may be associated with the risk of oral cancer and modulate the age of disease onset.
    Matched MeSH terms: Glutathione Transferase/genetics*; Glutathione S-Transferase pi/genetics*
  19. Ugusman A, Zakaria Z, Hui CK, Nordin NA
    PMID: 21496279 DOI: 10.1186/1472-6882-11-31
    Aqueous extract of Piper sarmentosum (AEPS) is known to possess antioxidant and anti-atherosclerotic activities but the mechanism responsible for it remains unclear. In early part of atherosclerosis, nuclear factor-kappa B (NF-κB) induces the expression of cellular adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and E-selectin. NADPH oxidase 4 (Nox4) is the predominant source of superoxide in the endothelial cells whereas superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase (GPx) are the antioxidant enzymes responsible for inactivating reactive oxygen species. The present study aimed to investigate the effects of AEPS on the gene expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx in cultured human umbilical vein endothelial cells (HUVECs).
    Matched MeSH terms: Glutathione Peroxidase/genetics; Glutathione Peroxidase/metabolism
  20. Abd Hamid NA, Hasrul MA, Ruzanna RJ, Ibrahim IA, Baruah PS, Mazlan M, et al.
    Nutr J, 2011;10:37.
    PMID: 21513540 DOI: 10.1186/1475-2891-10-37
    Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise.
    Matched MeSH terms: Glutathione Peroxidase/drug effects; Glutathione Peroxidase/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links