Displaying publications 61 - 80 of 355 in total

Abstract:
Sort:
  1. Taha M, Ismail NH, Zaki HM, Wadood A, Anouar EH, Imran S, et al.
    Bioorg Chem, 2017 12;75:235-241.
    PMID: 29031169 DOI: 10.1016/j.bioorg.2017.10.004
    3,4-Dimethoxybenzohydrazide derivatives (1-25) have been synthesized and evaluated for their urease inhibitory potential. Among the series, compounds 2, 3, 4 and 5 with IC50 values 12.61 ± 0.07, 18.24 ± 0.14, 19.22 ± 0.21, and 8.40 ± 0.05 µM, respectively, showed excellent urease inhibitory potentials when compared with standard thiourea (IC50 value 21.40 ± 0.21 µM). Compounds 1, 6, 8, 18, 19 and 20 also showed good to moderate inhibition, while the remaining compounds were found to be completely inactive. The structures of compounds 6 and 25 were confirmed through X-ray crystallography while the structures of remaining compounds were confirmed through ESI-MS and 1H NMR. Molecular docking studies were performed understand the binding interactions with enzyme active site. The synthesized compounds were evaluated for cytotoxicity and found to be nontoxic.
    Matched MeSH terms: Models, Molecular*
  2. Raih MF, Ahmad S, Zheng R, Mohamed R
    Biophys Chem, 2005 Apr 1;114(1):63-9.
    PMID: 15792862
    A non-redundant database of 4536 structural domains, comprising more than 790,000 residues, has been used for the calculation of their solvent accessibility in the native protein environment and then in the isolated domain environment. Nearly 140,000 (18%) residues showed a change in accessible surface area in the above two conditions. General features of this change under these two circumstances have been pointed out. Propensities of these interfacing amino acid residues have been calculated and their variation for different secondary structure types has been analyzed. Actual amount of surface area lost by different secondary structures is higher in the case of helix and strands compared to coil and other conformations. Overall change in surface area in hydrophobic and uncharged residues is higher than that in charged residues. An attempt has been made to know the predictability of interface residues from sequence environments. This analysis and prediction results have significant implications towards determining interacting residues in proteins and for the prediction of protein-protein, protein-ligand, protein-DNA and similar interactions.
    Matched MeSH terms: Models, Molecular
  3. Shamsir MS, Dalby AR
    Biophys J, 2007 Mar 15;92(6):2080-9.
    PMID: 17172295
    Previous molecular dynamic simulations have reported elongation of the existing beta-sheet in prion proteins. Detailed examination has shown that these elongations do not extend beyond the proline residues flanking these beta-sheets. In addition, proline has also been suggested to possess a possible structural role in preserving protein interaction sites by preventing invasion of neighboring secondary structures. In this work, we have studied the possible structural role of the flanking proline residues by simulating mutant structures with alternate substitution of the proline residues with valine. Simulations showed a directional inhibition of elongation, with the elongation progressing in the direction of valine including evident inhibition of elongation by existing proline residues. This suggests that the flanking proline residues in prion proteins may have a containment role and would confine the beta-sheet within a specific length.
    Matched MeSH terms: Models, Molecular*
  4. Oyeleye A, Normi YM
    Biosci Rep, 2018 Sep 03;38(4).
    PMID: 30042170 DOI: 10.1042/BSR20180323
    Chitinases catalyze the degradation of chitin, a ubiquitous polymer generated from the cell walls of fungi, shells of crustaceans, and cuticles of insects. They are gaining increasing attention in medicine, agriculture, food and drug industries, and environmental management. Their roles in the degradation of chitin for the production of industrially useful products and in the control of fungal pathogens and insect pests render them attractive for such purposes. However, chitinases have diverse sources, characteristics, and mechanisms of action that seem to restrain optimization procedures and render standardization techniques for enhanced practical applications complex. Hence, results of laboratory trials are not usually consistent with real-life applications. With the growing field of protein engineering, these complexities can be overcome by modifying or redesigning chitinases to enhance specific features required for specific applications. In this review, the variations in features and mechanisms of chitinases that limit their exploitation in biotechnological applications are compiled. Recent attempts to engineer chitinases for improved efficiency are also highlighted.
    Matched MeSH terms: Models, Molecular
  5. Nakamukai S, Ise Y, Ohtsuka S, Okada S, Matsunaga S
    Biosci Biotechnol Biochem, 2019 Nov;83(11):1985-1988.
    PMID: 31250707 DOI: 10.1080/09168451.2019.1630258
    N6-Isopentenyladenosine (i6A) was isolated from a marine sponge Oceanapia sp. as the major cytotoxic constituent along with N6-isopentenyladenosine 5'-monophosphate (i6AP) which was inactive. The structures of i6A and i6AP were assigned by a combination of the analysis of NMR spectroscopy and mass spectrometry. This is the first isolation of i6A and i6AP from a marine sponge.
    Matched MeSH terms: Models, Molecular
  6. Gopinath SC, Tang TH, Chen Y, Citartan M, Tominaga J, Lakshmipriya T
    Biosens Bioelectron, 2014 Nov 15;61:357-69.
    PMID: 24912036 DOI: 10.1016/j.bios.2014.05.024
    Influenza viruses, which are RNA viruses belonging to the family Orthomyxoviridae, cause respiratory diseases in birds and mammals. With seasonal epidemics, influenza spreads all over the world, resulting in pandemics that cause millions of deaths. Emergence of various types and subtypes of influenza, such as H1N1 and H7N9, requires effective surveillance to prevent their spread and to develop appropriate anti-influenza vaccines. Diagnostic probes such as glycans, aptamers, and antibodies now allow discrimination among the influenza strains, including new subtypes. Several sensors have been developed based on these probes, efforts made to augment influenza detection. Herein, we review the currently available sensing strategies to detect influenza viruses.
    Matched MeSH terms: Models, Molecular
  7. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T
    Biosens Bioelectron, 2014 Jul 15;57:292-302.
    PMID: 24607580 DOI: 10.1016/j.bios.2014.02.029
    Sensing applications can be used to report biomolecular interactions in order to elucidate the functions of molecules. The use of an analyte and a ligand is a common set-up in sensor development. For several decades, antibodies have been considered to be potential analytes or ligands for development of so-called "immunosensors." In an immunosensor, formation of the complex between antibody and antigen transduces the signal, which is measurable in various ways (e.g., both labeled and label-free based detection). Success of an immunosensor depends on various factors, including surface functionalization, antibody orientation, density of the antibody on the sensor platform, and configuration of the immunosensor. Careful optimization of these factors can generate clear-cut results for any immunosensor. Herein, current aspects, involved in the generated immunosensors, are discussed.
    Matched MeSH terms: Models, Molecular
  8. Jothi L, Neogi S, Jaganathan SK, Nageswaran G
    Biosens Bioelectron, 2018 May 15;105:236-242.
    PMID: 29412948 DOI: 10.1016/j.bios.2018.01.040
    A novel nitrogen/argon (N2/Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N2/Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N2/Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔEP) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N2/Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA.
    Matched MeSH terms: Models, Molecular
  9. Moriyama T, Yang YL, Nishii R, Ariffin H, Liu C, Lin TN, et al.
    Blood, 2017 Sep 07;130(10):1209-1212.
    PMID: 28659275 DOI: 10.1182/blood-2017-05-782383
    Prolonged exposure to thiopurines (eg, mercaptopurine [MP]) is essential for curative therapy in acute lymphoblastic leukemia (ALL), but is also associated with frequent dose-limiting hematopoietic toxicities, which is partly explained by inherited genetic polymorphisms in drug metabolizing enzymes (eg, TPMT). Recently, our group and others identified germ line genetic variants in NUDT15 as another major cause of thiopurine-related myelosuppression, particularly in Asian and Hispanic people. In this article, we describe 3 novel NUDT15 coding variants (p.R34T, p.K35E, and p.G17_V18del) in 5 children with ALL enrolled in frontline protocols in Singapore, Taiwan, and at St. Jude Children's Research Hospital. Patients carrying these variants experienced significant toxicity and reduced tolerance to MP across treatment protocols. Functionally, all 3 variants led to partial to complete loss of NUDT15 nucleotide diphosphatase activity and negatively influenced protein stability. In particular, the p.G17_V18del variant protein showed extremely low thermostability and was completely void of catalytic activity, thus likely to confer a high risk of thiopurine intolerance. This in-frame deletion was only seen in African and European patients, and is the first NUDT15 risk variant identified in non-Asian, non-Hispanic populations. In conclusion, we discovered 3 novel loss-of-function variants in NUDT15 associated with MP toxicity, enabling more comprehensive pharmacogenetics-based thiopurine dose adjustments across diverse populations.
    Matched MeSH terms: Models, Molecular
  10. Salman AA, Tabandeh M, Heidelberg T, Duali Hussen RS
    Carbohydr Res, 2015 Apr 10;406:41-5.
    PMID: 25658065 DOI: 10.1016/j.carres.2014.12.015
    A series of glycolipid crown ether analogs was prepared by bis-propargylation of lauryl glycoside followed by subsequent click-coupling with ethylene glycol-based diazides. The triazole-linked macrocycles were obtained in remarkable high yields. While the surfactant assembly was affected by presence of sodium ions, suggesting the formation of complexes, no ion-selectivity was observed for the macrocylic ligands. Computational studies suggest a low but significant cation-binding activity of the macrocycle, involving coordination at both oxygen and nitrogen atoms.
    Matched MeSH terms: Models, Molecular
  11. Salman SM, Heidelberg T, Bin Tajuddin HA
    Carbohydr Res, 2013 Jun 28;375:55-62.
    PMID: 23685811 DOI: 10.1016/j.carres.2013.03.028
    Aiming for new glycolipids with enhanced chemical stability and close structural similarity to natural cell membrane lipids for the development of a drug delivery system, we have synthesized double amide analogs of glyco-glycerolipids. The synthesis applied a Staudinger reaction based coupling of a 1,3-diazide with fatty acid chlorides. While the concept furnished the desired glucosides in reasonable yields, the corresponding lactosides formed a tetrahydropyrimidine based 1:1 coupling product instead. This unexpected coupling result likely originates from steric hindrance at the iminophosphorane intermediate and provides an interesting core structure for potentially bioactive surfactants. The assembly behavior of both glycolipid types was investigated by optical polarizing microscopy, DSC and surface tension studies.
    Matched MeSH terms: Models, Molecular
  12. Hashim R, Mirzadeh SM, Heidelberg T, Minamikawa H, Yoshiaki T, Sugimura A
    Carbohydr Res, 2011 Dec 27;346(18):2948-56.
    PMID: 22088885 DOI: 10.1016/j.carres.2011.10.032
    Anomers and epimers α- and β-gluco and -galactosides are expected to behave differently. However, recent results on a series of Guerbet glycosides have indicated similar liquid crystal clearing temperatures for pure β-glucosides and the corresponding α-galactosides. This observation has led to speculation on similarities in the self-assembly interactions between the two systems, attributed to the trans-configuration of the 4-OH group and the hydrophobic aglycon. Previous simulations on related bilayers systems support this hypothesis, by relating this clearing transition temperature to intralayer (sugar-sugar) hydrogen bonding. In order to confirm the hypothesis, the comparison was expanded to include the cis-configurated pair, that is, α-gluco/β-galactoside. A set of α-configurated Guerbet glucosides as well as octyl α-galactoside were prepared and their thermotropic phase behavior studied. The data obtained enabled a complete comparison of the isomers of interest. While the results in general are in line with a pairing of the stereo-isomers according to the indicated cis/trans-configuration, differences within the pairs can be explained based on the direction of hydrogen bonds from a simple modeling study.
    Matched MeSH terms: Models, Molecular
  13. Tabandeh M, Goh EW, Salman AA, Heidelberg T, Duali Hussen RS
    Carbohydr Res, 2018 Nov;469:14-22.
    PMID: 30196011 DOI: 10.1016/j.carres.2018.08.016
    Two azide-terminated oligoethylene oxide spacered glycolipids have been synthesized, and their assembly behavior has been studied in comparison to the corresponding base surfactants. The results suggest potential of the Guerbet lactoside-based compound for targeted drug delivery, while a coiling of the ethylene oxide linker disfavors the application of the glucoside.
    Matched MeSH terms: Models, Molecular
  14. Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM
    Cell Stress Chaperones, 2019 Mar;24(2):351-368.
    PMID: 30649671 DOI: 10.1007/s12192-019-00969-1
    Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
    Matched MeSH terms: Models, Molecular
  15. Budiman C, Goh CKW, Arief II, Yusuf M
    Cell Stress Chaperones, 2021 Mar;26(2):377-386.
    PMID: 33247372 DOI: 10.1007/s12192-020-01183-0
    FKBP22 of a psychrophilic bacterium, Shewanella sp. SIB1 (SIB1 FKBP22), is a member of peptidyl-prolyl cis-trans isomerase (PPIase) and consists of N- and C-domains responsible for chaperone-like and PPIase catalytic activities, respectively. The chaperone-like activity of SIB1 FKBP22 was previously evidenced by its ability to prevent dithiothreitol (DTT)-induced insulin aggregation. Nevertheless, the mechanism by which this protein inhibits the aggregation remains unclear. To address this, the binding affinity of SIB1 FKBP22 to the native or reduced states of insulin was examined using surface plasmon resonance (SPR). The native and reduced states refer to insulin in the absence or DTT presence, respectively. The SPR sensorgram showed that SIB1 FKBP22 binds specifically to the reduced state of insulin, with a KD value of 37.31 ± 3.20 μM. This binding was facilitated by the N-domain, as indicated by the comparable KD values of the N-domain and SIB1 FKBP22. Meanwhile, the reduced state of insulin was found to have no affinity towards the C-domain. The KD value of SIB1 FKBP22 was slightly decreased by NaCl but was not severely affected by FK506, a specific FKBP inhibitor. Similarly, the prevention of DTT-induced aggregation by SIB1 FKBP22 was also modulated by the N-domain and was not affected by FK506. Further, the reduced and native states of insulin had no effect on the catalytic efficiency (kcat/KM) of SIB1 FKBP22 towards a peptide substrate. Nevertheless, the reduced state of insulin slightly reduced the catalytic efficiency towards refolding RNase T1, at up to 1.5-fold lower than in the absence of insulin. These results suggested that the binding event was mainly facilitated by hydrophobic interaction and was independent from its PPIase activity. Altogether, a possible mechanism by which SIB1 FKBP22 prevents DTT-induced insulin aggregation was proposed.
    Matched MeSH terms: Models, Molecular
  16. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Models, Molecular
  17. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Models, Molecular
  18. Tiekink ER, Zukerman-Schpector J
    Chem Commun (Camb), 2011 Jun 21;47(23):6623-5.
    PMID: 21455512 DOI: 10.1039/c1cc11173f
    Crystal structures of transition and main group element 1,1-dithiolates are shown to be partially sustained by C-H···π(chelate) interactions. For the planar binary bisdithiocarbamates, C-H···π(MS(2)C) interactions lead to aggregation patterns ranging from a 0-D four molecule aggregate to a 3-D architecture but with the majority of structures featuring 1-D or 2-D supramolecular assemblies.
    Matched MeSH terms: Models, Molecular
  19. Ling I, Alias Y, Sobolev AN, Byrne LT, Raston CL
    Chemistry, 2010 Jun 18;16(23):6973-82.
    PMID: 20455217 DOI: 10.1002/chem.200903320
    Addition of 1-alkyl-3-methylimidazolium (C(n)-mim) cations 3-5 to a mixture of bis-phosphonium cation 2 and sodium p-sulfonatocalix[4]arene (1) in the presence of lanthanide ions results in the selective binding of an imidazolium cation into the cavity of the calixarene. The result is a multi-layered solid material with an inherently flexible interplay of the components. Incorporating ethyl-, n-butyl- or n-hexyl-mim cations into the multi-layers results in significant perturbation of the structure, the most striking effect is the tilting of the plane of the bowl-shaped calixarene relative to the plane of the multi-layer, with tilt angles of 7.2, 28.9 and 65.5 degrees , respectively. The lanthanide ions facilitate complexation, but are not incorporated into the structures and, in all cases, the calixarene takes on a 5- charge, with one of the lower-rim phenolic groups deprotonated. ROESY NMR experiments and other (1)H NMR spectroscopy studies establish the formation of 1:1 supermolecules of C(n)-mim and calixarene, regardless of the ratio of the two components, and indicate that the supermolecules undergo rapid exchange on the NMR spectroscopy timescale.
    Matched MeSH terms: Models, Molecular
  20. Ramly NZ, Dix SR, Ruzheinikov SN, Sedelnikova SE, Baker PJ, Chow YP, et al.
    Commun Biol, 2021 03 19;4(1):376.
    PMID: 33742128 DOI: 10.1038/s42003-021-01904-w
    In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
    Matched MeSH terms: Models, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links