Displaying publications 61 - 80 of 991 in total

Abstract:
Sort:
  1. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Mutation/genetics
  2. Yap LF, Lee D, Khairuddin A, Pairan MF, Puspita B, Siar CH, et al.
    Oral Dis, 2015 Oct;21(7):850-7.
    PMID: 25580884 DOI: 10.1111/odi.12309
    NOTCH signalling can exert oncogenic or tumour suppressive effects in both solid and haematological malignancies. Similar to T-cell acute lymphoblastic leukaemia (T-ALL), early studies suggested a pro-tumorigenic role of NOTCH in head and neck squamous cell carcinoma (HNSCC), mainly based on the increased expression levels of the genes within the pathway. Recently, data from exome sequencing analyses unexpectedly pointed to a tumour suppressor role for NOTCH in HNSCC by identifying loss-of-function mutations in the NOTCH1 gene in a significant proportion of patients. These data have questioned the accepted role of NOTCH in HNSCC and the possible rationale of targeting NOTCH in this disease. This review summarises the current information on NOTCH signalling in HNSCC and discusses how this pathway can apparently exert opposing effects within the same disease.
    Matched MeSH terms: Mutation
  3. Yap KP, Ho WS, Gan HM, Chai LC, Thong KL
    Front Microbiol, 2016;7:270.
    PMID: 26973639 DOI: 10.3389/fmicb.2016.00270
    Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.
    Matched MeSH terms: Mutation
  4. Yap E, Tumian NR, Azma RZ, Sharifah NA, Salwati S, Hamidah NH, et al.
    Malays J Pathol, 2017 Aug;39(2):107-113.
    PMID: 28866691 MyJurnal
    Clinical resistance to imatinib (IM) in chronic myeloid leukemia (CML) carries adverse consequences. We investigated 22 CML patients who developed IM-resistance for BCR-ABL kinase domain (KD) mutations. The median follow-up for this study was 101.9 months (range: 22.2 to 176.5 months) and the estimated mean overall survival was 150.87 months (95% CI: 130.0 to 171.0). Five out of 22 patients tested positive for BCR-ABL KD mutations: 2 had T315I, 2 had E255K and 1 had V289F mutations. Of the remaining 17 patients who did not harbor BCR-ABL KD mutations, 11 patients received nilotinib while the rest continued on IM. All 17 achieved haematological remission but only 5 patients achieved complete cytogenetic remission, 4 of whom did so after switching to nilotinib. Our study shows that most of our IM-resistant patients do not test positive for BCR-ABL KD mutations by available testing methods and the role of second generation tyrosine kinase inhibitors remains undetermined. A critical analysis of the BCR-ABL KD mutations and the underlying mechanisms/ pathways of BCR-ABL independent IM-resistance along with potential treatments in the horizon will be discussed.
    Matched MeSH terms: Mutation
  5. Yang Z, Cui Q, Zhou W, Qiu L, Han B
    Mol Genet Genomic Med, 2019 06;7(6):e680.
    PMID: 30968607 DOI: 10.1002/mgg3.680
    BACKGROUND: Thalassemia is a common genetic disorder. High prevalence of thalassemia is found in South China, Southeast Asia, India, the Middle East, and the Mediterranean regions. Thalassemia was thought to exist only in southern China, but an increasing number of cases from northern China have been recently reported.

    METHODS: During 2012 to 2017, suspected thalassemia people were detected for common α- and β-thalassemia mutations by gap-Polymerase Chain Reaction (PCR) and reverse dot blot (RDB) analysis in Peking Union Medical College Hospital. One thousand and fifty-nine people with thalassemia mutations were analyzed retrospectively. We picked mutated individuals who originally came from northern areas, and conducted telephone follow-up survey in order to collect their ancestral information. Besides, we used "thalassemia", "mutation", and "Southeast Asian countries" as keywords to search the relevant studies in PubMed and Embase databases.

    RESULTS: All carriers included in our study were resided in northern China. Among them, 17.3% were native northerners and 82.7% were immigrants from southern China. Although substantial difference was found in α- and β-thalassemia ratio and detailed spectrum of α- and β-globin mutation spectrum between our data and data obtained from a previous meta-analysis literature focused on southern China, the most common gene mutations were the same. Similar β-thalassemia mutation spectrum was found among Thai, Malaysian Chinese, and Guangdong people, however, no other similarities in gene profile were found between Chinese and other ethnic groups in Southeast Asia.

    CONCLUSION: Chinese people in different areas had similar gene mutation, whereas they had significantly different mutation spectrums from other ethnic groups in Southeast Asia.

    Matched MeSH terms: Mutation Rate*
  6. Yang Y, Mi J, Liang J, Liao X, Ma B, Zou Y, et al.
    Front Microbiol, 2019;10:2506.
    PMID: 31736928 DOI: 10.3389/fmicb.2019.02506
    Despite our continuous improvement in understanding the evolution of antibiotic resistance, the changes in the carbon metabolism during the evolution of antibiotic resistance remains unclear. To investigate the evolution of antibiotic resistance and the changes in carbon metabolism under antibiotic pressure, Escherichia coli K-12 was evolved for 38 passages under a concentration gradient of doxycycline (DOX). The 0th-passage sensitive strain W0, the 20th-passage moderately resistant strain M20, and the 38th-passage highly resistant strain E38 were selected for the determination of biofilm formation, colony area, and carbon metabolism levels, as well as genome and transcriptome sequencing. The MIC of DOX with E. coli significantly increased from 4 to 96 μg/ml, and the IC50 increased from 2.18 ± 0.08 to 64.79 ± 0.75 μg/ml after 38 passages of domestication. Compared with the sensitive strain W0, the biofilm formation amount of the resistant strains M20 and E38 was significantly increased (p < 0.05). Single-nucleotide polymorphisms (SNPs) were distributed in antibiotic resistance-related genes such as ribosome targets, cell membranes, and multiple efflux pumps. In addition, there were no mutated genes related to carbon metabolism. However, the genes involved in the biosynthesis of secondary metabolites and carbon metabolism pathway were downregulated, showing a significant decrease in the metabolic intensity of 23 carbon sources (p < 0.05). The results presented here show that there may be a correlation between the evolution of E. coli DOX resistance and the decrease of carbon metabolism, and the mechanism was worthy of further research, providing a theoretical basis for the prevention and control of microbial resistance.
    Matched MeSH terms: Mutation
  7. Yang XR, Devi BCR, Sung H, Guida J, Mucaki EJ, Xiao Y, et al.
    Breast Cancer Res Treat, 2017 Oct;165(3):687-697.
    PMID: 28664506 DOI: 10.1007/s10549-017-4356-8
    PURPOSE: To characterize the spectrum of germline mutations in BRCA1, BRCA2, and PALB2 in population-based unselected breast cancer cases in an Asian population.

    METHODS: Germline DNA from 467 breast cancer patients in Sarawak General Hospital, Malaysia, where 93% of the breast cancer patients in Sarawak are treated, was sequenced for the entire coding region of BRCA1; BRCA2; PALB2; Exons 6, 7, and 8 of TP53; and Exons 7 and 8 of PTEN. Pathogenic variants included known pathogenic variants in ClinVar, loss of function variants, and variants that disrupt splice site.

    RESULTS: We found 27 pathogenic variants (11 BRCA1, 10 BRCA2, 4 PALB2, and 2 TP53) in 34 patients, which gave a prevalence of germline mutations of 2.8, 3.23, and 0.86% for BRCA1, BRCA2, and PALB2, respectively. Compared to mutation non-carriers, BRCA1 mutation carriers were more likely to have an earlier age at onset, triple-negative subtype, and lower body mass index, whereas BRCA2 mutation carriers were more likely to have a positive family history. Mutation carrier cases had worse survival compared to non-carriers; however, the association was mostly driven by stage and tumor subtype. We also identified 19 variants of unknown significance, and some of them were predicted to alter splicing or transcription factor binding sites.

    CONCLUSION: Our data provide insight into the genetics of breast cancer in this understudied group and suggest the need for modifying genetic testing guidelines for this population with a much younger age at diagnosis and more limited resources compared with Caucasian populations.

    Matched MeSH terms: Germ-Line Mutation*
  8. Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, et al.
    J Clin Oncol, 2020 03 01;38(7):674-685.
    PMID: 31841383 DOI: 10.1200/JCO.19.01907
    PURPOSE: To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized.

    METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes.

    RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer.

    CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.

    Matched MeSH terms: Germ-Line Mutation
  9. Yang W, Lee PP, Thong MK, Ramanujam TM, Shanmugam A, Koh MT, et al.
    Clin Genet, 2015 Dec;88(6):542-9.
    PMID: 25534311 DOI: 10.1111/cge.12553
    Familial multiple intestinal atresias is an autosomal recessive disease with or without combined immunodeficiency. In the last year, several reports have described mutations in the gene TTC7A as causal to the disease in different populations. However, exact correlation between different genotypes and various phenotypes are not clear. In this study, we report identification of novel compound heterozygous mutations in TTC7A gene in a Malay girl with familial multiple intestinal atresias and severe combined immunodeficiency (MIA-SCID) by whole exome sequencing. We found two mutations in TTC7A: one that destroyed a putative splicing acceptor at the junction of intron 17/exon 18 and one that introduced a stop codon that would truncate the last two amino acids of the encoded protein. Reviewing the recent reports on TTC7A mutations reveals correlation between the position and nature of the mutations with patient survival and clinical manifestations. Examination of public databases also suggests carrier status for healthy individuals, making a case for population screening on this gene, especially in populations with suspected frequent founder mutations.
    Matched MeSH terms: Mutation
  10. Yang KG, Kutlar F, George E, Wilson JB, Kutlar A, Stoming TA, et al.
    Br J Haematol, 1989 May;72(1):73-80.
    PMID: 2736244
    This study concerned the identification of the beta-thalassaemia mutations that were present in 27 Malay patients with Hb E-beta-thalassaemia and seven Malay patients with thalassaemia major who were from West Malaysia. Nearly 50% of all beta-thalassaemia chromosomes carried the G----C substitution at nucleotide 5 of IVS-I; the commonly occurring Chinese anomalies such as the frameshift at codons 41 and 42, the nonsense mutation A----T at codon 17, the A----G substitution at position -28 of the promoter region, and the C----T substitution at position 654 of the second intron, were rare or absent. Two new thalassaemia mutations were discovered. The first involves a frameshift at codon 35 (-C) that was found in two patients with Hb E-beta zero-thalassaemia and causes a beta zero-thalassaemia because a stop codon is present at codon 60. The second is an AAC----AGC mutation in codon 19 that was present on six chromosomes. This substitution results in the production of an abnormal beta chain (beta-Malay) that has an Asn----Ser substitution at position beta 19. Hb Malay is a 'Hb Knossos-like' beta +-thalassaemia abnormality; the A----G mutation at codon 19 likely creates an alternate splicing site between codons 17 and 18, reducing the efficiency of the normal donor splice site at IVS-I to about 60%.
    Matched MeSH terms: Mutation
  11. Yam H, Rahim AA, Mohamad S, Mahadi NM, Manaf UA, Shu-Chien AC, et al.
    PLoS One, 2014;9(6):e99218.
    PMID: 24927285 DOI: 10.1371/journal.pone.0099218
    Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC) of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.
    Matched MeSH terms: Mutation
  12. Xu A, Lin Y, Sheng H, Cheng J, Mei H, Ting TH, et al.
    Pediatr Diabetes, 2020 05;21(3):431-440.
    PMID: 31957151 DOI: 10.1111/pedi.12985
    OBJECTIVE: The purpose of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by whole-exome sequencing (WES) and estimate the frequency and describe the clinical characteristics of MODY in southern China.

    METHODS: Genetic analysis was performed in 42 patients with MODY aged 1 month to 18 years among a cohort of 759 patients with diabetes, identified with the following four clinical criteria: age of diagnosis ≤18 years; negative pancreatic autoantibodies; family history of diabetes; or persistently detectable C-peptide; or diabetes associated with extrapancreatic features. GCK gene mutations were first screened by Sanger sequencing. GCK mutation-negative patients were further analyzed by WES.

    RESULTS: Mutations were identified in 24 patients: 20 mutations in GCK, 1 in HNF4A, 1 in INS, 1 in ABCC8, and a 17q12 microdeletion. Four previously unpublished novel GCK mutations: c.1108G>C in exon 9, and c.1339C>T, c.1288_1290delCTG, and c.1340_1343delGGGGinsCTGGTCT in exon 10 were detected. WES identified a novel missense mutation c.311A>G in exon 3 in the INS gene, and copy number variation analysis detected a 1.4 Mb microdeletion in the long arm of the chromosome 17q12 region. Compared with mutation-negative subjects, the mutation-positive subjects had lower hemoglobin A1c and initial blood glucose levels.

    CONCLUSIONS: Most MODY cases in this study were due to GCK mutations, which is in contrast to previous reports in Chinese patients. Diabetes associated with extrapancreatic features should be a clinical criterion for MODY genetic analysis. Mutational analysis by WES provided a precise diagnosis of MODY subtypes. Moreover, WES can be useful for detecting large deletions in coding regions in addition to point mutations.

    Matched MeSH terms: DNA Mutational Analysis; Mutation
  13. Xie CB, Shaikh LH, Garg S, Tanriver G, Teo AE, Zhou J, et al.
    Sci Rep, 2016 Apr 21;6:24697.
    PMID: 27098837 DOI: 10.1038/srep24697
    Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3.
    Matched MeSH terms: Mutation
  14. Xiao WZ, Han DH, Wang F, Wang YQ, Zhu YH, Wu YF, et al.
    Tumour Biol., 2014 Jul;35(7):6687-93.
    PMID: 24705863 DOI: 10.1007/s13277-014-1885-1
    We conducted a meta-analysis in order to investigate the relationships between PTEN gene mutations and the prognosis in glioma. The following electronic databases were searched for relevant articles without any language restrictions: Web of Science (1945 ~ 2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966 ~ 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analyses were conducted using the STATA software (Version 12.0, Stata Corporation, College Station, Texas USA). Hazard ratio (HR) with its corresponding 95 % confidence interval (95%CI) was calculated. Six independent cohort studies with a total of 357 glioma patients met our inclusion criteria. Our meta-analysis results indicated that glioma patients with PTEN gene mutations exhibited a significantly shorter overall survival (OS) than those without PTEN gene mutations (HR = 3.66, 95%CI = 2.02 ~ 5.30, P < 0.001). Ethnicity-stratified subgroup analysis demonstrated that PTEN gene mutations were closely linked to poor prognosis in glioma among Americans (HR = 3.72, 95%CI = 1.72 ~ 5.73, P < 0.001), while similar correlations were not observed among populations in Sweden, Italy, and Malaysia (all P > 0.05). Our meta-analysis provides direct and strong evidences for the speculation of PTEN gene mutations' correlation with poor prognosis of glioma patients.
    Matched MeSH terms: Mutation
  15. Xiao B, Deng X, Ng EY, Allen JC, Lim SY, Ahmad-Annuar A, et al.
    JAMA Neurol, 2018 01 01;75(1):127-128.
    PMID: 29131875 DOI: 10.1001/jamaneurol.2017.3363
    Matched MeSH terms: Mutation/genetics*
  16. Wu YL, Lee V, Liam CK, Lu S, Park K, Srimuninnimit V, et al.
    Lung Cancer, 2018 12;126:1-8.
    PMID: 30527172 DOI: 10.1016/j.lungcan.2018.10.004
    OBJECTIVE: Patients with advanced non-small-cell lung cancer (NSCLC) with an adenocarcinoma component are recommended to undergo epidermal growth factor receptor (EGFR) mutation testing when being considered for EGFR targeted therapy. We conducted an exploratory analysis to inform the clinical utility of EGFR mutation testing in blood cell-free DNA using the cobas®EGFR Mutation Test v2.

    MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.

    RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.

    CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.

    Matched MeSH terms: DNA Mutational Analysis/methods; Mutation*
  17. Wu YH, Cheong LC, Meon S, Lau WH, Kong LL, Joseph H, et al.
    Arch Virol, 2013 Jun;158(6):1407-10.
    PMID: 23397332 DOI: 10.1007/s00705-013-1624-8
    A 246-nt variant of Coconut cadang-cadang viroid (CCCVd) has been identified and described from oil palms with orange spotting symptoms in Malaysia. Compared with the 246-nt form of CCCVd from coconut, the oil palm variant substituted C(31)→U in the pathogenicity domain and G(70)→C in the central conserved domain. This is the first sequence reported for a 246-nt variant of CCCVd in oil palms expressing orange spotting symptoms.
    Matched MeSH terms: Point Mutation/genetics
  18. Wu X, Azizan EAB, Goodchild E, Garg S, Hagiyama M, Cabrera CP, et al.
    Nat Genet, 2023 Jun;55(6):1009-1021.
    PMID: 37291193 DOI: 10.1038/s41588-023-01403-0
    Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.
    Matched MeSH terms: Mutation
  19. Wong YY, Alauddin H, Raja Sabudin RZA, Ithnin A, Jalil N, Abdul Latiff Z, et al.
    Malays J Pathol, 2021 Apr;43(1):95-100.
    PMID: 33903312
    The Siriraj I Gγ(Aγδβ)0-thalassaemia is a novel mutation involving a 118kb deletion of the β-globin gene cluster. It was first reported in 2012 in two unrelated families from the southern part of Thailand. The carriers in the heterozygous state are clinically asymptomatic. Nonetheless, its complex interaction with other β-thalassaemia could give rise to different clinical phenotypes, ranging from mild thalassaemia intermedia to thalassaemia major. We report here a case of a six-year-old Malay boy, presented with pallor, growth failure and hepatosplenomegaly. His haemoglobin at presentation was 9.2g/dL with a mean cell haemoglobin of 22.6pg and a mean cell volume of 69.9fl. His peripheral blood smear showed features of thalassaemia intermedia. Haemoglobin (Hb) analysis revealed markedly raised Hb F (83%), normal HbA2 levels and absent HbA. Deoxyribonucleic acid (DNA) analysis showed compound heterozygous IVS1-1 (G→T) β-globin gene mutation and Siriraj I Gγ(Aγδβ)0-deletion (genotype βIVS1-1/ β Siriraj I deletion). Both his father and elder sister are carriers of Siriraj I Gγ(Aγδβ)0-thalassaemia while his mother carries IVS1-1 (G→T) gene mutation. Clinically, the patient is transfusion dependent on six weekly regime. To the best of our knowledge, this is the first reported case in Malaysia involving unique Siriraj I Gγ(Aγδβ)0-thalassaemia and IVS1-1 (G→T) in a compound heterozygous state. In summary, detection of Siriraj I Gγ(Aγδβ)0-thalassaemia is essential as this deletion can lead to severe disease upon interaction with a β-thalassemia point mutation as demonstrated in our case. The establishment of effective carrier screening and genetic counselling is important to prevent its adverse consequences.
    Matched MeSH terms: Mutation; Point Mutation
  20. Wong WF, Looi CY, Kon S, Movahed E, Funaki T, Chang LY, et al.
    Eur J Immunol, 2014 Mar;44(3):894-904.
    PMID: 24310293 DOI: 10.1002/eji.201343496
    Runx1 transcription factor is a key player in the development and function of T cells. Runx1 transcripts consist of two closely related isoforms (proximal and distal Runx1) whose expressions are regulated by different promoters. Which Runx1 isoform is expressed appears to be tightly regulated. The regulatory mechanism for differential transcription is, however, not fully understood. In this study, we investigated the regulation of the proximal Runx1 promoter in T cells. We showed that proximal Runx1 was expressed at a low level in naïve T cells from C57BL/6 mice, but its expression was remarkably induced upon T-cell activation. In the promoter of proximal Runx1, a highly conserved region was identified which spans from -412 to the transcription start site and harbors a NFAT binding site. In a luciferase reporter assay, this region was found to be responsive to T-cell activation through Lck and calcineurin pathways. Mutagenesis studies and chromatin immunoprecipitation assay indicated that the NFAT site was essential for NFAT binding and transactivation of the proximal Runx1 promoter. Furthermore, TCR signaling-induced expression of proximal Runx1 was blocked by treatment of cells with cyclosporin A. Together, these results demonstrate that the calcineurin-NFAT pathway regulates proximal Runx1 transcription upon TCR stimulation.
    Matched MeSH terms: Mutation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links