Displaying publications 61 - 80 of 993 in total

Abstract:
Sort:
  1. Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, et al.
    Genet Med, 2022 Dec;24(12):2453-2463.
    PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007
    PURPOSE: Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects.

    METHODS: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated.

    RESULTS: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments.

    CONCLUSION: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.

    Matched MeSH terms: Mutation
  2. Ooi ZS, Pang SW, Teow SY
    Malays J Pathol, 2022 Dec;44(3):415-428.
    PMID: 36591710
    Colorectal cancer (CRC) remains among the most commonly diagnosed cancers and has been on the rise. It is also one of the most lethal diseases globally, being the third leading cause of cancerrelated death. Depending on the stages and disease conditions, CRC is treated by surgery, chemo-, radio-therapy, immunotherapy or in combination. However, these therapies have subpar results with unwanted side effects, hence continuous effort is ongoing to explore new type of therapeutic modalities. Among the sub-types of CRC, KRAS, BRAF and NRAS mutated CRC comprise approximately 43%, 10% and 3% of the total cases, respectively. These mutations are associated with tumour progression and anti-epidermal growth factor receptor (EGFR) treatment resistance. Due to their important role in CRC, these genes have thus become targets in the development of novel treatments. In this paper, we discuss the current and upcoming treatment on CRC by targeting these mutated genes, with more focus on KRAS and BRAF due to the higher occurrence of mutations in CRC.
    Matched MeSH terms: Mutation
  3. Ng JML, Ngeow YF, Saw SH, Ng HF, Zin T
    J Med Microbiol, 2022 Dec;71(12).
    PMID: 36748567 DOI: 10.1099/jmm.0.001618
    Introduction Listeriosis, a foodborne infection caused by Listeria monocytogenes, could lead to febrile listerial gastroenteritis and a more invasive form which is often associated with a high mortality and hospitalisation rate. Gentamicin, used as an adjunct therapy with ampicillin, remains the treatment of choice for this life-threatening and invasive infection.Gap statement Nevertheless, there is little data on gentamicin resistance determinants in L. monocytogenes.Aim In this study, we selected and characterised B2b, a gentamicin-resistant mutant derived from L. monocytogenes ATCC 19115 to determine the target(s) of resistance in L. monocytogenes after exposure to gentamicin.Methodology Whole-genome sequencing was carried out to identify the mutation site(s) and possible mechanism(s) of resistance. The mutant was characterised using antimicrobial susceptibility testing and PCR. For biological verifications, complementation and allelic exchange mutagenesis were carried out.Results We found that the gentamicin resistance in B2b was caused by a 10 bp deletion in atpG2 which encodes a gamma subunit of the ATP synthase in L. monocytogenes. Using atpG2 PCR, various other mutations were identified in other gentamicin resistant mutants derived from ATCC 19115. In addition, the mutation from B2b, when introduced into L. ivanovii, also caused gentamicin resistance in this Listeria species.Conclusion Hence, atpG2 mutations appear to be important determinants of gentamicin resistance not only in L. monocytogenes but possibly also in other Listeria species.
    Matched MeSH terms: Mutation
  4. Garg A, Keng WT, Chen Z, Sathe AA, Xing C, Kailasam PD, et al.
    J Clin Invest, 2022 Dec 01;132(23).
    PMID: 36282599 DOI: 10.1172/JCI156864
    Multiple genetic loci have been reported for progeroid syndromes. However, the molecular defects in some extremely rare forms of progeria have yet to be elucidated. Here, we report a 21-year-old man of Chinese ancestry who has an autosomal recessive form of progeria, characterized by severe dwarfism, mandibular hypoplasia, hyperopia, and partial lipodystrophy. Analyses of exome sequencing data from the entire family revealed only 1 rare homozygous missense variant (c.86C>T; p.Pro29Leu) in TOMM7 in the proband, while the parents and 2 unaffected siblings were heterozygous for the variant. TOMM7, a nuclear gene, encodes a translocase in the outer mitochondrial membrane. The TOMM complex makes up the outer membrane pore, which is responsible for importing many preproteins into the mitochondria. A proteomic comparison of mitochondria from control and proband-derived cultured fibroblasts revealed an increase in abundance of several proteins involved in oxidative phosphorylation, as well as a reduction in abundance of proteins involved in phospholipid metabolism. We also observed elevated basal and maximal oxygen consumption rates in the fibroblasts from the proband as compared with control fibroblasts. We concluded that altered mitochondrial protein import due to biallelic loss-of-function TOMM7 can cause severe growth retardation and progeroid features.
    Matched MeSH terms: Mutation
  5. Razman AZ, Chua YA, Mohd Kasim NA, Al-Khateeb A, Sheikh Abdul Kadir SH, Jusoh SA, et al.
    Int J Mol Sci, 2022 Nov 29;23(23).
    PMID: 36499307 DOI: 10.3390/ijms232314971
    Familial hypercholesterolaemia (FH) is caused by mutations in lipid metabolism genes, predominantly in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin-type 9 (PCSK9) and LDL receptor adaptor protein 1 (LDLRAP1). The prevalence of genetically confirmed FH and the detection rate of pathogenic variants (PV) amongst clinically diagnosed patients is not well established. Targeted next-generation sequencing of LDLR, APOB, PCSK9 and LDLRAP1 was performed on 372 clinically diagnosed Malaysian FH subjects. Out of 361 variants identified, 40 of them were PV (18 = LDLR, 15 = APOB, 5 = PCSK9 and 2 = LDLRAP1). The majority of the PV were LDLR and APOB, where the frequency of both PV were almost similar. About 39% of clinically diagnosed FH have PV in PCSK9 alone and two novel variants of PCSK9 were identified in this study, which have not been described in Malaysia and globally. The prevalence of genetically confirmed potential FH in the community was 1:427, with a detection rate of PV at 0.2% (12/5130). About one-fourth of clinically diagnosed FH in the Malaysian community can be genetically confirmed. The detection rate of genetic confirmation is similar between potential and possible FH groups, suggesting a need for genetic confirmation in index cases from both groups. Clinical and genetic confirmation of FH index cases in the community may enhance the early detection of affected family members through family cascade screening.
    Matched MeSH terms: Mutation
  6. Dzul Keflee R, Leong KH, Ogawa S, Bignon J, Chan MC, Kong KW
    Biochem Pharmacol, 2022 Nov;205:115262.
    PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262
    The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanisms of resistance towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever-evolving and adaptive nature of NSCLC.
    Matched MeSH terms: Mutation
  7. Suali L, Mohammad Salih FA, Ibrahim MY, Jeffree MSB, Thomas FM, Siew Moy F, et al.
    Hemoglobin, 2022 Nov;46(6):317-324.
    PMID: 36815306 DOI: 10.1080/03630269.2023.2169154
    β-thalassemia is a serious public health problem in Sabah due to its high prevalence. This study aimed to investigate the effects of different types of β-globin gene mutations, coinheritance with α-globin gene mutations, XmnI-Gγ, and rs368698783 polymorphisms on the β-thalassemia phenotypes in Sabahan patients. A total of 111 patients were included in this study. The sociodemographic profile of the patients was collected using a semi-structured questionnaire, while clinical data were obtained from their medical records. Gap-PCR, ARMS-PCR, RFLP-PCR, and multiplex PCR were performed to detect β- and α-globin gene mutations, as well as XmnI-Gγ and rs368698783 polymorphisms. Our data show that the high prevalence of β-thalassemia in Sabah is not due to consanguineous marriages (5.4%). A total of six different β-globin gene mutations were detected, with Filipino β°-deletion being the most dominant (87.4%). There were 77.5% homozygous β-thalassemia patients, 16.2% compound heterozygous β-thalassemia patients, and 6.3% β-thalassemia/Hb E patients. Further evaluation on compound heterozygous β-thalassemia and β-thalassemia/Hb E patients found no concomitant α-globin gene mutations and the rs368698783 polymorphism. Furthermore, the XmnI-Gγ (-/+) genotype did not demonstrate a strong impact on the disease phenotype, as only two of five patients in the compound heterozygous β-thalassemia group and two of three patients in the β-thalassemia/Hb E group had a moderate phenotype. Our findings indicate that the severity of the β-thalassemia phenotypes is closely related to the type of β-globin gene mutations but not to the XmnI-Gγ and rs368698783 polymorphisms.
    Matched MeSH terms: Mutation
  8. Soo R, Mery L, Bardot A, Kanesvaran R, Keong TC, Pongnikorn D, et al.
    ESMO Open, 2022 Oct;7(5):100560.
    PMID: 35988454 DOI: 10.1016/j.esmoop.2022.100560
    BACKGROUND: Lung cancer is the second most common cancer and leading cause of cancer mortality worldwide. Recent advances in molecular testing and targeted therapy have improved survival among patients with metastatic non-small-cell lung cancer (NSCLC). We sought to quantify and describe molecular testing among metastatic non-squamous NSCLC cases in selected Southeast Asian countries and describe first-line therapy chosen.

    PATIENTS AND METHODS: A retrospective study was conducted based on incident lung cancer cases diagnosed between 2017 and 2019 in Lampang (Thailand), Penang (Malaysia), Singapore and Yogyakarta (Indonesia). Cases (n = 3413) were defined using the International Classification of Diseases for Oncology third edition. In Singapore, a clinical series obtained from the National Cancer Centre was used to identify patients, while corresponding population-based cancer registries were used elsewhere. Tumor and clinical information were abstracted by chart review according to a predefined study protocol. Molecular testing of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) gene rearrangement, ROS1 gene rearrangement and BRAF V600 mutation was recorded.

    RESULTS: Among 2962 cases with a specified pathological diagnosis (86.8%), most patients had non-squamous NSCLC (75.8%). For cases with staging information (92.1%), the majority presented with metastatic disease (71.3%). Overall, molecular testing rates in the 1528 patients with stage IV non-squamous NSCLC were 67.0% for EGFR, 42.3% for ALK, 39.1% for ROS1, 7.8% for BRAF and 36.1% for PD-L1. Among these patients, first-line systemic treatment included chemotherapy (25.9%), targeted therapy (35.6%) and immunotherapy (5.9%), with 31% of patients having no record of antitumor treatment. Molecular testing and the proportion of patients receiving treatment were highly heterogenous between the regions.

    CONCLUSIONS: This first analysis of data from a clinically annotated registry for lung cancer from four settings in Southeast Asia has demonstrated the feasibility of integrating clinical data within population-based cancer registries. Our study results identify areas where further development could improve patient access to optimal treatment.

    Matched MeSH terms: Mutation
  9. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Mutation/genetics
  10. Saeidi H, Raju CS, Ismail P, Raub SHA, Omar N, Hisyam Bakrin I
    Cell Mol Biol (Noisy-le-grand), 2022 Aug 31;68(8):22-26.
    PMID: 36800845 DOI: 10.14715/cmb/2022.68.8.4
    Genetic alterations in the homologous recombination repair (HRR) genes are associated with an increased risk of prostate cancer development, and patients harboring these mutations can benefit from targeted therapy. The main aim of this study is to identify genetic alterations in HRR genes as a potential target for targeted treatment. In this study, targeted next generation sequencing (NGS) is used to analyze mutations in the protein-coding regions of the 27 genes involved in HRR and mutations in hotspots of 5 cancer-associated genes in four FFPE samples and three blood samples from prostate cancer patients. We identified two mutations in TP53 and KRAS. We also identified four conflicting interpretations of pathogenicity variants in BRCA2, STK11 genes and one variant of uncertain significance in the RAD51B gene. In addition, we detected one drug response variant in TP53, and two novel variants in CDK12 and ATM. Our results revealed some actionable pathogenic and potential pathogenic variants that may be associated with response to the Poly (ADP-ribose) polymerase (PARP) inhibitor treatment. More studies in a larger cohort are needed to evaluate and determine the association of HRR mutations with prostate cancer.
    Matched MeSH terms: Mutation
  11. Peksheva O, Kuzovatova E, Parfenova O, Zaytseva N
    Viruses, 2022 Aug 27;14(9).
    PMID: 36146704 DOI: 10.3390/v14091898
    The increasing number of HIV-infected people who are receiving ART, including those with low adherence, is causing the spread of HIV drug resistance (DR). A total of 1396 plasma samples obtained from treatment-experienced patients from the Volga federal district (VFD), Russia, were examined to investigate HIV DR occurrence. The time periods 2008−2015 and 2016−2019 were compared. Fragmentary Sanger sequencing was employed to identify HIV resistance to reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) using an ABI 3500XL genetic analyzer, a ViroSeq™ HIV-1 genotyping system (Alameda, CA, USA) and AmpliSense HIV-Resist-Seq reagent kits (Moscow, Russia). In 2016−2019, HIV DR was detected significantly more often than in 2008−2015 (p < 0.01). Mutations to RTIs retained leading positions in the structure of DR. Frequencies of resistance mutations to nucleoside and non-nucleoside RTIs (NRTIs and NNRTIs) in the spectra of detected mutations show no significant differences. Resistance to NRTIs after 2016 began to be registered more often as a part of multidrug resistance (MDR), as opposed to resistance to a single class of antiretrovirals. The frequency of DR mutations to PIs was low, both before and after 2016 (7.9% and 6.1% in the spectrum, respectively, p > 0.05). MDR registration rate became significantly higher from 2008 to 2019 (17.1% to 72.7% of patients, respectively, p < 0.01). M184V was the dominant replacement in all the years of study. A significant increase in the frequency of K65R replacement was revealed. The prevalence of integrase strand transfer inhibitor (INSTI) resistance mutations remains to be investigated.
    Matched MeSH terms: Mutation
  12. Ang BH, Ho WK, Wijaya E, Kwan PY, Ng PS, Yoon SY, et al.
    J Clin Oncol, 2022 May 10;40(14):1542-1551.
    PMID: 35143328 DOI: 10.1200/JCO.21.01647
    PURPOSE: With the development of poly (ADP-ribose) polymerase inhibitors for treatment of patients with cancer with an altered BRCA1 or BRCA2 gene, there is an urgent need to ensure that there are appropriate strategies for identifying mutation carriers while balancing the increased demand for and cost of cancer genetics services. To date, the majority of mutation prediction tools have been developed in women of European descent where the age and cancer-subtype distributions are different from that in Asian women.

    METHODS: In this study, we built a new model (Asian Risk Calculator) for estimating the likelihood of carrying a pathogenic variant in BRCA1 or BRCA2 gene, using germline BRCA genetic testing results in a cross-sectional population-based study of 8,162 Asian patients with breast cancer. We compared the model performance to existing mutation prediction models. The models were evaluated for discrimination and calibration.

    RESULTS: Asian Risk Calculator included age of diagnosis, ethnicity, bilateral breast cancer, tumor biomarkers, and family history of breast cancer or ovarian cancer as predictors. The inclusion of tumor grade improved significantly the model performance. The full model was calibrated (Hosmer-Lemeshow P value = .614) and discriminated well between BRCA and non-BRCA pathogenic variant carriers (area under receiver operating curve, 0.80; 95% CI, 0.75 to 0.84). Addition of grade to the existing clinical genetic testing criteria targeting patients with breast cancer age younger than 45 years reduced the proportion of patients referred for genetic counseling and testing from 37% to 33% (P value = .003), thereby improving the overall efficacy.

    CONCLUSION: Population-specific customization of mutation prediction models and clinical genetic testing criteria improved the accuracy of BRCA mutation prediction in Asian patients.

    Matched MeSH terms: Mutation; Germ-Line Mutation
  13. Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, et al.
    J Clin Oncol, 2022 May 10;40(14):1529-1541.
    PMID: 35077220 DOI: 10.1200/JCO.21.02112
    PURPOSE: To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management.

    METHODS: We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment.

    RESULTS: BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers.

    CONCLUSION: In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.

    Matched MeSH terms: Mutation
  14. Liu CY, Lin HF, Lai WY, Lin YY, Lin TW, Yang YP, et al.
    J Chin Med Assoc, 2022 Apr 01;85(4):409-413.
    PMID: 35383703 DOI: 10.1097/JCMA.0000000000000703
    Lung carcinoma (LC) is the third most common cancer diagnosis and accounted for the most cancer-related mortality worldwide in 2018. Based on the type of cells from which it originates, LC is commonly classified into non-small cell lung cancers (NSCLC) and small cell lung cancers (SCLC). NSCLC account for the majority of LC and can be further categories into adenocarcinoma, large cell carcinoma, and squamous cell carcinoma. Accurate classification of LC is critical for its adequate treatment and therapeutic outcome. Since NSCLC express more epidermal growth factor receptor (EGFR) with activation mutations, targeted therapy EGFR-tyrosine kinase inhibitors (TKIs) have been considered as primary option of NSCLC patients with activation EGFR mutation. In this review, we present the genetic alterations, reported mutations in EGFR, and TKIs treatment in NSCLC patients with an emphasis on the downstream signaling pathways in NSCLC progression. Among the signaling pathways identified, mitogen activation protein kinase (MAPK), known also as extracellular signal-regulated protein kinase (Erk) pathway, is the most investigated among the related pathways. EGFR activation leads to the autophosphorylation of its kinase domain and subsequent activation of Ras, phosphorylation of Raf and MEK1/2, and the activation of ERK1/2. Phosphatidylinositol 3-kinase (PI3K)/Akt is another signal pathway that regulates cell cycle and has been linked to NSCLC progression. Currently, three generations of EGFR TKIs have been developed as a first-line treatment of NSCLC patients with EGFR activation and mutation in which these treatment options will be further discussed in this review. The Supplementary Appendix for this article is available at http://links.lww.com/JCMA/A138.
    Matched MeSH terms: Mutation
  15. Breast Cancer Association Consortium, Mavaddat N, Dorling L, Carvalho S, Allen J, González-Neira A, et al.
    JAMA Oncol, 2022 Mar 01;8(3):e216744.
    PMID: 35084436 DOI: 10.1001/jamaoncol.2021.6744
    IMPORTANCE: Rare germline genetic variants in several genes are associated with increased breast cancer (BC) risk, but their precise contributions to different disease subtypes are unclear. This information is relevant to guidelines for gene panel testing and risk prediction.

    OBJECTIVE: To characterize tumors associated with BC susceptibility genes in large-scale population- or hospital-based studies.

    DESIGN, SETTING, AND PARTICIPANTS: The multicenter, international case-control analysis of the BRIDGES study included 42 680 patients and 46 387 control participants, comprising women aged 18 to 79 years who were sampled independently of family history from 38 studies. Studies were conducted between 1991 and 2016. Sequencing and analysis took place between 2016 and 2021.

    EXPOSURES: Protein-truncating variants and likely pathogenic missense variants in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53.

    MAIN OUTCOMES AND MEASURES: The intrinsic-like BC subtypes as defined by estrogen receptor, progesterone receptor, and ERBB2 (formerly known as HER2) status, and tumor grade; morphology; size; stage; lymph node involvement; subtype-specific odds ratios (ORs) for carrying protein-truncating variants and pathogenic missense variants in the 9 BC susceptibility genes.

    RESULTS: The mean (SD) ages at interview (control participants) and diagnosis (cases) were 55.1 (11.9) and 55.8 (10.6) years, respectively; all participants were of European or East Asian ethnicity. There was substantial heterogeneity in the distribution of intrinsic subtypes by gene. RAD51C, RAD51D, and BARD1 variants were associated mainly with triple-negative disease (OR, 6.19 [95% CI, 3.17-12.12]; OR, 6.19 [95% CI, 2.99-12.79]; and OR, 10.05 [95% CI, 5.27-19.19], respectively). CHEK2 variants were associated with all subtypes (with ORs ranging from 2.21-3.17) except for triple-negative disease. For ATM variants, the association was strongest for the hormone receptor (HR)+ERBB2- high-grade subtype (OR, 4.99; 95% CI, 3.68-6.76). BRCA1 was associated with increased risk of all subtypes, but the ORs varied widely, being highest for triple-negative disease (OR, 55.32; 95% CI, 40.51-75.55). BRCA2 and PALB2 variants were also associated with triple-negative disease. TP53 variants were most strongly associated with HR+ERBB2+ and HR-ERBB2+ subtypes. Tumors occurring in pathogenic variant carriers were of higher grade. For most genes and subtypes, a decline in ORs was observed with increasing age. Together, the 9 genes were associated with 27.3% of all triple-negative tumors in women 40 years or younger.

    CONCLUSIONS AND RELEVANCE: The results of this case-control study suggest that variants in the 9 BC risk genes differ substantially in their associated pathology but are generally associated with triple-negative and/or high-grade disease. Knowing the age and tumor subtype distributions associated with individual BC genes can potentially aid guidelines for gene panel testing, risk prediction, and variant classification and guide targeted screening strategies.

    Matched MeSH terms: Germ-Line Mutation
  16. Lama R, Yusof W, Shrestha TR, Hanafi S, Bhattarai M, Hassan R, et al.
    Hematol Oncol Stem Cell Ther, 2022 Mar 01;15(1):279-284.
    PMID: 33592169 DOI: 10.1016/j.hemonc.2021.01.004
    BACKGROUND: Beta-thalassemia is a genetic disorder that is inherited in an autosomal recessive pattern. This genetic disease leads to a defective beta-globin hemoglobin chain causing partial or complete beta-globin chain synthesis loss. Beta-thalassemia major patients need a continuous blood transfusion and iron chelation to maintain the normal homeostasis of red blood cells (RBCs) and other systems in the body. Patients also require treatment procedures that are costly and tedious, resulting in a serious health burden for developing nations such as Nepal.

    METHODS: A total of 61 individuals clinically diagnosed to have thalassemia were genotyped with multiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Twenty-one major mutations were investigated using allele-specific primers grouped into six different panels.

    RESULTS: The most common mutations found (23%) were IVS 1-5 (G-C) and Cd 26 (G-A) (HbE), followed by 619 deletion, Cd 8/9 (+G), Cd 16 (-C), Cd 41/42 (-TTCT), IVS 1-1 (G-T), Cd 19 (A-G), and Cd 17 (A-T) at 20%, 12%, 8%, 6%, 4%, 3%, and 1%, respectively.

    CONCLUSION: The results of this study revealed that Nepal's mutational profile is comparable to that of its neighboring countries, such as India and Myanmar. This study also showed that thalassemia could be detected across 17 Nepal's ethnic groups, especially those whose ancestors originated from India and Central Asia.

    Matched MeSH terms: DNA Mutational Analysis/methods; Mutation
  17. Fu JYL, Chong YM, Sam IC, Chan YF
    J Virol Methods, 2022 Mar;301:114462.
    PMID: 35026305 DOI: 10.1016/j.jviromet.2022.114462
    Emerging SARS-CoV-2 variants of concern (VOC) have been associated with enhanced transmissibility and immune escape. Next-generation sequencing (NGS) of the whole genome is the gold standard for variant identification for surveillance but is time-consuming and costly. Rapid and cost-effective assays that detect SARS-CoV-2 variants are needed. We evaluated Allplex SARS-CoV-2 Master Assay and Variants I Assay to detect HV69/70 deletion, Y144 deletion, E484K, N501Y, and P681H spike mutations in 248 positive samples collected in Kuala Lumpur, Malaysia, between January and May 2021. Spike variants were detected in 78/248 (31.5 %), comprising 60 VOC B.1.351 (beta) and 18 B.1.1.7 (alpha). With NGS as reference for 115 samples, the sensitivity for detecting the spike mutations was 98.7 % with the Master Assay and 100 % with the Variants I Assay. The emergence of beta variants correlated with increasing COVID-19 infections in Malaysia. The prevalence of alpha VOC and lineage B.1.466.2 was low. These assays detect mutations present in alpha, beta and gamma VOCs. Of the VOCs which have subsequently emerged, the assays should detect omicron (B.1.1.529) but not B.1.617.2 (delta). In conclusion, spike variant PCR assays can be used to rapidly monitor selected SARS-CoV-2 VOCs in resource-limited settings, but require updates as new variants emerge.
    Matched MeSH terms: Mutation
  18. Shahid M, Azfaralariff A, Zubair M, Abdulkareem Najm A, Khalili N, Law D, et al.
    Gene, 2022 Feb 20;812:146104.
    PMID: 34864095 DOI: 10.1016/j.gene.2021.146104
    Among the 22 Fanconi anemia (FA) reported genes, 90% of mutational spectra were found in three genes, namely FANCA (64%), FANCC (12%) and FANCG (8%). Therefore, this study aimed to identify the high-risk deleterious variants in three selected genes (FANCA, FANCC, and FANCG) through various computational approaches. The missense variant datasets retrieved from the UCSC genome browser were analyzed for their pathogenicity, stability, and phylogenetic conservancy. A total of 23 alterations, of which 16 in FANCA, 6 in FANCC and one variant in FANCG, were found to be highly deleterious. The native and mutant structures were generated, which demonstrated a profound impact on the respective proteins. Besides, their pathway analysis predicted many other pathways in addition to the Fanconi anemia pathway, homologous recombination, and mismatch repair pathways. Hence, this is the first comprehensive study that can be useful for understanding the genetic signatures in the development of FA.
    Matched MeSH terms: Mutation, Missense*
  19. Sa'at H, Lee YK, Yoon SY, Wong SW, Woo YL, Barlow-Stewart K, et al.
    Int J Behav Med, 2022 Feb;29(1):1-13.
    PMID: 33791992 DOI: 10.1007/s12529-021-09984-y
    BACKGROUND: The uptake of risk-reducing salpingo-oophorectomy (RRSO) in Asian countries is variable despite being the most effective option for ovarian cancer risk reduction in BRCA mutation carriers. Exploration of factors which may impact the RRSO decision-making of BRCA mutation carriers from Malaysia, a developing country in Southeast Asia, was undertaken.

    METHODS: In-depth interviews with 28 Malaysian BRCA mutation carriers with a history of breast cancer were conducted in addition to observing their RRSO decision-making consultations in the clinic.

    RESULTS: The decision-making considerations among the carriers were centered around the overarching theme of "Negotiating cancer risk and womanhood priorities," with the following themes: (1) risk perception, (2) self-preservation, (3) motherhood obligation, and (4) the preciousness of marriage. Cognitive knowledge of BRCA risk was often conceptualized based on personal and family history of cancer, personal beliefs, and faith. Many women reported fears that RRSO would affect them physically and emotionally, worrying about the post-surgical impact on their motherhood responsibilities. Nevertheless, some reported feeling obliged to choose RRSO for the sake of their children. For some, their husband's support and approval were critical, with emotional well-being and sexuality reportedly perceived as important to sustaining married life. Despite reporting hesitancy toward RRSO, women's decisions about choosing this option evolved as their priorities changed at different stages of life.

    CONCLUSIONS: Recognizing during clinic encounters with Malaysian women that RRSO decision-making involves negotiating the likelihood of developing cancer with the societal priorities of being a woman, mother, and wife may serve to support their decision-making.

    Matched MeSH terms: Mutation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links