Displaying publications 61 - 80 of 117 in total

Abstract:
Sort:
  1. Safari MJ, Wong JHD, Jong WL, Thorpe N, Cutajar D, Rosenfeld A, et al.
    Phys Med, 2017 Mar;35:66-72.
    PMID: 28256398 DOI: 10.1016/j.ejmp.2017.02.002
    PURPOSE: The purpose of this study was to investigate the effects of routine exposure parameters on patient's dose during neuro-interventional radiology procedures.

    METHODS: We scrutinized the routine radiological exposure parameters during 58 clinical neuro-interventional procedures such as, exposure direction, magnification, frame rate, and distance between image receptor to patient's body and evaluate their effects on patient's dose using an anthropomorphic phantom. Radiation dose received by the occipital region, ears and eyes of the phantom were measured using MOSkin detectors.

    RESULTS: DSA imaging technique is a major contributor to patient's dose (80.9%) even though they are used sparingly (5.3% of total frame number). The occipital region of the brain received high dose largely from the frontal tube constantly placed under couch (73.7% of the total KAP). When rotating the frontal tube away from under the couch, the radiation dose to the occipital reduced by 40%. The use of magnification modes could increase radiation dose by 94%. Changing the image receptor to the phantom surface distance from 10 to 40cm doubled the radiation dose received by the patient's skin at the occipital region.

    CONCLUSION: Our findings provided important insights into the contribution of selected fluoroscopic exposure parameters and their impact on patient's dose during neuro-interventional radiology procedures. This study showed that the DSA imaging technique contributed to the highest patient's dose and judicial use of exposure parameters might assist interventional radiologists in effective skin and eye lens dose reduction for patients undergoing neuro-interventional procedures.

    Matched MeSH terms: Phantoms, Imaging
  2. Lau S, Abdul Aziz YF, Ng KH
    PLoS One, 2017;12(4):e0175781.
    PMID: 28419125 DOI: 10.1371/journal.pone.0175781
    OBJECTIVES: To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study.

    METHODS: We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs.

    RESULTS: Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (p<0.0001). Compression parameters including compression force, compression pressure, CBT and breast contact area were widely variable between [relative standard deviation (RSD)≥21.0%] and within (p<0.0001) Asian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05).

    CONCLUSIONS: Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

    Matched MeSH terms: Phantoms, Imaging
  3. Ray KJ, Larkin JR, Tee YK, Khrapitchev AA, Karunanithy G, Barber M, et al.
    NMR Biomed, 2016 11;29(11):1624-1633.
    PMID: 27686882 DOI: 10.1002/nbm.3614
    The purpose of this study was to develop realistic phantom models of the intracellular environment of metastatic breast tumour and naïve brain, and using these models determine an analysis metric for quantification of CEST MRI data that is sensitive to only labile proton exchange rate and concentration. The ability of the optimal metric to quantify pH differences in the phantoms was also evaluated. Novel phantom models were produced, by adding perchloric acid extracts of either metastatic mouse breast carcinoma cells or healthy mouse brain to bovine serum albumin. The phantom model was validated using 1 H NMR spectroscopy, then utilized to determine the sensitivity of CEST MRI to changes in pH, labile proton concentration, T1 time and T2 time; six different CEST MRI analysis metrics (MTRasym , APT*, MTRRex , AREX and CESTR* with and without T1 /T2 compensation) were compared. The new phantom models were highly representative of the in vivo intracellular environment of both tumour and brain tissue. Of the analysis methods compared, CESTR* with T1 and T2 time compensation was optimally specific to changes in the CEST effect (i.e. minimal contamination from T1 or T2 variation). In phantoms with identical protein concentrations, pH differences between phantoms could be quantified with a mean accuracy of 0.6 pH units. We propose that CESTR* with T1 and T2 time compensation is the optimal analysis method for these phantoms. Analysis of CEST MRI data with T1 /T2 time compensated CESTR* is reproducible between phantoms, and its application in vivo may resolve the intracellular alkalosis associated with breast cancer brain metastases without the need for exogenous contrast agents.
    Matched MeSH terms: Phantoms, Imaging
  4. Jong WL, Ung NM, Wong JH, Ng KH, Wan Ishak WZ, Abdul Malik R, et al.
    Phys Med, 2016 Nov;32(11):1466-1474.
    PMID: 27842982 DOI: 10.1016/j.ejmp.2016.10.022
    The purpose of this study is to measure patient skin dose in tangential breast radiotherapy. Treatment planning dose calculation algorithm such as Pencil Beam Convolution (PBC) and in vivo dosimetry techniques such as radiochromic film can be used to accurately monitor radiation doses at tissue depths, but they are inaccurate for skin dose measurement. A MOSFET-based (MOSkin) detector was used to measure skin dose in this study. Tangential breast radiotherapies ("bolus" and "no bolus") were simulated on an anthropomorphic phantom and the skin doses were measured. Skin doses were also measured in 13 patients undergoing each of the techniques. In the patient study, the EBT2 measurements and PBC calculation tended to over-estimate the skin dose compared with the MOSkin detector (p<0.05) in the "no bolus radiotherapy". No significant differences were observed in the "bolus radiotherapy" (p>0.05). The results from patients were similar to that of the phantom study. This shows that the EBT2 measurement and PBC calculation, while able to predict accurate doses at tissue depths, are inaccurate in predicting doses at build-up regions. The clinical application of the MOSkin detectors showed that the average total skin doses received by patients were 1662±129cGy (medial) and 1893±199cGy (lateral) during "no bolus radiotherapy". The average total skin doses were 4030±72cGy (medial) and 4004±91cGy (lateral) for "bolus radiotherapy". In some cases, patient skin doses were shown to exceed the dose toxicity level for skin erythema. Hence, a suitable device for in vivo dosimetry is necessary to accurately determine skin dose.
    Matched MeSH terms: Phantoms, Imaging
  5. Ramli N, Khairy AM, Seow P, Tan LK, Wong JH, Ganesan D, et al.
    Eur Radiol, 2016 Jul;26(7):2019-29.
    PMID: 26560718 DOI: 10.1007/s00330-015-4045-0
    OBJECTIVES: We evaluated the feasibility of using chemical shift gradient-echo (GE) in- and opposed-phase (IOP) imaging to grade glioma.

    METHODS: A phantom study was performed to investigate the correlation of (1)H MRS-visible lipids with the signal loss ratio (SLR) obtained using IOP imaging. A cross-sectional study approved by the institutional review board was carried out in 22 patients with different glioma grades. The patients underwent scanning using IOP imaging and single-voxel spectroscopy (SVS) using 3T MRI. The brain spectra acquisitions from solid and cystic components were obtained and correlated with the SLR for different grades.

    RESULTS: The phantom study showed a positive linear correlation between lipid quantification at 0.9 parts per million (ppm) and 1.3 ppm with SLR (r = 0.79-0.99, p 

    Matched MeSH terms: Phantoms, Imaging
  6. Al-jarrah AM, Abdul Rahman A, Shahrim I, Razak NN, Ababneh B, Tousi ET
    Phys Med, 2016 Jan;32(1):36-41.
    PMID: 26494156 DOI: 10.1016/j.ejmp.2015.09.003
    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.
    Matched MeSH terms: Phantoms, Imaging
  7. Tan SK, Yeong CH, Ng KH, Abdul Aziz YF, Sun Z
    PLoS One, 2016;11(8):e0161543.
    PMID: 27552224 DOI: 10.1371/journal.pone.0161543
    OBJECTIVES: This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE).

    MATERIALS AND METHODS: Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region.

    RESULTS: Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor.

    CONCLUSION: The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners.

    Matched MeSH terms: Phantoms, Imaging
  8. Omar H, Ahmad AL, Hayashi N, Idris Z, Abdullah JM
    Malays J Med Sci, 2015 Dec;22(Spec Issue):20-8.
    PMID: 27006634 MyJurnal
    Magnetoencephalography (MEG) has been extensively used to measure small-scale neuronal brain activity. Although it is widely acknowledged as a sensitive tool for deciphering brain activity and source localisation, the accuracy of the MEG system must be critically evaluated. Typically, on-site calibration with the provided phantom (Local phantom) is used. However, this method is still questionable due to the uncertainty that may originate from the phantom itself. Ideally, the validation of MEG data measurements would require cross-site comparability.
    Matched MeSH terms: Phantoms, Imaging
  9. Lubis LE, Bayuadi I, Pawiro SA, Ng KH, Bosmans H, Soejoko DS
    Phys Med, 2015 Nov;31(7):659-68.
    PMID: 26050060 DOI: 10.1016/j.ejmp.2015.05.011
    The purpose of this study is to quantify the quality of the available imaging modes for various iodine-based contrast agent concentration in paediatric cardiology. The figure of merit (FOM) was defined as the squared signal to noise ratio divided by a patient dose related parameter. An in house constructed phantom simulated a series of vessel segments with iodine concentrations from 10% or 30 mg/cc to 16% or 48 mg/cc of iodine in a blood plasma solution, all within the dimensional constraints of a paediatric patient. The phantom also used test inserts of tin (Sn). Measurements of Entrance Surface Air Kerma (ESAK) and exit dose rate were performed along with calculations of the signal-to-noise ratio (SNR) of all the objects. A first result showed that it was favourable to employ low dose fluoroscopy mode and lower frame rate modes in cine acquisition if dynamic information is not critical. Normal fluoroscopy dose mode provided a considerably higher dose level (in comparison to low dose mode) with only a slight improvement in SNR. Higher frame rate cine modes should be used however when the clinical situation dictates so. This work also found that tin should not be intended as iodine replacement material for research purposes due to the mismatching SNR, particularly on small vessel sizes.
    Matched MeSH terms: Phantoms, Imaging
  10. Hossain MI, Faruque MR, Islam MT
    Prog Biophys Mol Biol, 2015 Nov;119(2):103-10.
    PMID: 25863147 DOI: 10.1016/j.pbiomolbio.2015.03.008
    The aim of this paper is to investigate the effects of the distances between the human head and internal cellular device antenna on the specific absorption rate (SAR). This paper also analyzes the effects of inclination angles between user head and mobile terminal antenna on SAR values. The effects of the metal-glass casing of mobile phone on the SAR values were observed in the vicinity of the human head model. Moreover, the return losses were investigated in all cases to mark antenna performance. This analysis was performed by adopting finite-difference time-domain (FDTD) method on Computer Simulation Technology (CST) Microwave Studio. The results indicate that by increasing the distance between the user head and antenna, SAR values are decreased. But the increase in inclination angle does not reduce SAR values in all cases. Additionally, this investigation provides some useful indication for future design of low SAR mobile terminal antenna.
    Matched MeSH terms: Phantoms, Imaging
  11. Safari MJ, Wong JH, Ng KH, Jong WL, Cutajar DL, Rosenfeld AB
    Med Phys, 2015 May;42(5):2550-8.
    PMID: 25979047 DOI: 10.1118/1.4918576
    The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures.
    Matched MeSH terms: Phantoms, Imaging
  12. Sabarudin A, Mustafa Z, Nassir KM, Hamid HA, Sun Z
    J Appl Clin Med Phys, 2015 Jan;16(1):319-328.
    PMID: 28297258 DOI: 10.1120/jacmp.v16i1.5135
    This phantom study was designed to compare the radiation dose in thoracic and abdomen-pelvic CT scans with and without use of tube current modulation (TCM). Effective dose (ED) and size-specific dose estimation (SSDE) were calculated with the absorbed doses measured at selective radiosensitive organs using a thermoluminescence dosimeter-100 (TLD-100). When compared to protocols without TCM, the ED and SSDE were reduced significantly with use of TCM for both the thoracic and abdomen-pelvic CT. With use of TCM, the ED was 6.50±0.29 mSv for thoracic and 6.01±0.20 mSv for the abdomen-pelvic CT protocols. However without use of TCM, the ED was 20.07±0.24 mSv and 17.30±0.41 mSv for the thoracic and abdomen-pelvic CT protocols, respectively. The corresponding SSDE was 10.18±0.48 mGy and 11.96±0.27 mGy for the thoracic and abdomen-pelvic CT protocols with TCM, and 31.56±0.43 mGy and 33.23±0.05 mGy for thoracic and abdomen-pelvic CT protocols without TCM, respectively. The highest absorbed dose was measured at the breast with 8.58±0.12 mGy in the TCM protocols and 51.52±14.72 mGy in the protocols without TCM during thoracic CT. In the abdomen-pelvic CT, the absorbed dose was highest at the skin with 9.30±1.28 mGy and 29.99±2.23 mGy in protocols with and without use of TCM, respectively. In conclusion, the TCM technique results in significant dose reduction; thus it is to be highly recommended in routine thoracic and abdomen-pelvic CT. PACS numbers: 87.57.Q-, 87.57.qp, 87.53.Bn.
    Matched MeSH terms: Phantoms, Imaging
  13. Faruque MR, Hossain MI, Misran N, Singh M, Islam MT
    PLoS One, 2015;10(11):e0142663.
    PMID: 26599584 DOI: 10.1371/journal.pone.0142663
    A metamaterial-embedded planar inverted-F antenna (PIFA) is proposed in this study for cellular phone applications. A dual-band PIFA is designed to operate both GSM 900 MHz and DCS 1800 MHz. The ground plane of a conventional PIFA is modified using a planar one-dimensional metamaterial array. The investigation is performed using the Finite Integration Technique (FIT) of CST Microwave Studio. The performance of the developed antenna was measured in an anechoic chamber. The specific absorption rate (SAR) values are calculated considering two different holding positions: cheek and tilt. The SAR values are measured using COMOSAR measurement system. Good agreement is observed between the simulated and measured data. The results indicate that the proposed metamaterial-embedded antenna produces significantly lower SAR in the human head compared to the conventional PIFA. Moreover, the modified antenna substrate leads to slight improvement of the antenna performances.
    Matched MeSH terms: Phantoms, Imaging
  14. Aziz MZ, Yusoff AL, Osman ND, Abdullah R, Rabaie NA, Salikin MS
    J Med Phys, 2015 Jul-Sep;40(3):150-5.
    PMID: 26500401 DOI: 10.4103/0971-6203.165080
    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation.
    Matched MeSH terms: Phantoms, Imaging
  15. Yusof FH, Ung NM, Wong JH, Jong WL, Ath V, Phua VC, et al.
    PLoS One, 2015;10(6):e0128544.
    PMID: 26052690 DOI: 10.1371/journal.pone.0128544
    This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments.
    Matched MeSH terms: Phantoms, Imaging
  16. Jafari SM, Jordan TJ, Distefano G, Bradley DA, Spyrou NM, Nisbet A, et al.
    Br J Radiol, 2015;88(1055):20140804.
    PMID: 26258442 DOI: 10.1259/bjr.20140804
    To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification.
    Matched MeSH terms: Phantoms, Imaging
  17. Sabarudin A, Yusof MZ, Mohamad M, Sun Z
    Radiat Prot Dosimetry, 2014 Dec;162(3):316-21.
    PMID: 24255172 DOI: 10.1093/rpd/nct280
    A study on the radiation dose associated with cerebral CT angiography (CTA) and CT perfusion (CTP) was conducted on an anthropomorphic phantom with the aim of estimating the effective dose (E) and entrance skin dose (ESD) in the eyes and thyroid gland during different CTA and CTP protocols. The E was calculated to be 0.61 and 0.28 mSv in CTA with 100 and 80 kV(p), respectively. In contrast, CTP resulted in an estimated E of 2.74 and 2.07 mSv corresponding to 40 and 30 s protocols, respectively. The eyes received a higher ESD than the thyroid gland in all of these protocols. The results of this study indicate that combining both CTA and CTP procedures are not recommended in the stroke evaluation due to high radiation dose. Application of modified techniques in CTA (80 kV(p)) and CTP (30 s) is highly recommended in clinical practice for further radiation dose reduction.
    Matched MeSH terms: Phantoms, Imaging*
  18. Alashrah S, Kandaiya S, Maalej N, El-Taher A
    Radiat Prot Dosimetry, 2014 Dec;162(3):338-44.
    PMID: 24300340 DOI: 10.1093/rpd/nct315
    Estimation of the surface dose is very important for patients undergoing radiation therapy. The purpose of this study is to investigate the dose at the surface of a water phantom at a depth of 0.007 cm as recommended by the International Commission on Radiological Protection and International Commission on Radiation Units and Measurement with radiochromic films (RFs), thermoluminescent dosemeters and an ionisation chamber in a 6-MV photon beam. The results were compared with the theoretical calculation using Monte Carlo (MC) simulation software (MCNP5, BEAMnrc and DOSXYZnrc). The RF was calibrated by placing the films at a depth of maximum dose (d(max)) in a solid water phantom and exposing it to doses from 0 to 500 cGy. The films were scanned using a transmission high-resolution HP scanner. The optical density of the film was obtained from the red component of the RGB images using ImageJ software. The per cent surface dose (PSD) and percentage depth dose (PDD) curve were obtained by placing film pieces at the surface and at different depths in the solid water phantom. TLDs were placed at a depth of 10 cm in a solid water phantom for calibration. Then the TLDs were placed at different depths in the water phantom and were exposed to obtain the PDD. The obtained PSD and PDD values were compared with those obtained using a cylindrical ionisation chamber. The PSD was also determined using Monte Carlo simulation of a LINAC 6-MV photon beam. The extrapolation method was used to determine the PSD for all measurements. The PSD was 15.0±3.6% for RF. The TLD measurement of the PSD was 16.0±5.0%. The (0.6 cm(3)) cylindrical ionisation chamber measurement of the PSD was 50.0±3.0%. The theoretical calculation using MCNP5 and DOSXYZnrc yielded a PSD of 15.0±2.0% and 15.7±2.2%. In this study, good agreement between PSD measurements was observed using RF and TLDs with the Monte Carlo calculation. However, the cylindrical chamber measurement yielded an overestimate of the PSD. This is probably due to the ionisation chamber calibration factor that is only valid in charged particle equilibrium condition, which is not achieved at the surface in the build-up region.
    Matched MeSH terms: Phantoms, Imaging*
  19. Dabbagh A, Abdullah BJ, Ramasindarum C, Abu Kasim NH
    Ultrason Imaging, 2014 Oct;36(4):291-316.
    PMID: 24626566 DOI: 10.1177/0161734614526372
    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies.
    Matched MeSH terms: Phantoms, Imaging*
  20. Dabbagh A, Abdullah BJ, Abu Kasim NH, Ramasindarum C
    Int J Hyperthermia, 2014 Feb;30(1):66-74.
    PMID: 24286257 DOI: 10.3109/02656736.2013.854930
    The emergence of thermal modalities has promoted the use of heat-sensitive phantoms for calibration, measurement, and verification purposes. However, development of durable phantoms with high precision ability to represent the temperature distribution remains a challenge. This study aims to introduce a reusable phantom that provides an accurate assessment of the heated region in various thermal modalities.
    Matched MeSH terms: Phantoms, Imaging*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links