Displaying publications 61 - 80 of 211 in total

Abstract:
Sort:
  1. Dutta S, Majzoub A, Agarwal A
    Arab J Urol, 2019;17(2):87-97.
    PMID: 31285919 DOI: 10.1080/2090598X.2019.1599624
    Objective: To review and present the most distinct concepts on the association of reactive oxygen species (ROS) with male reproduction. Methods: The Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines were used to search PubMed, Medline, EMBASE, and the Cochrane electronic databases for studies investigating the role of oxidative stress (OS) on sperm function. Results: The literature search yielded 1857 studies, of which 1791 articles were excluded because of irrelevance of data, non-English language, non-human nature or because they were case reports or commentaries. All included studies were reviews (46), meta-analyses (one), original research studies (18) and guideline articles (one). The studies were published between 1984 and 2018. Under normal physiological conditions, ROS are vital for sperm maturation, hyperactivation, capacitation, acrosome reaction, as well as fertilisation. However, a number of endogenous and exogenous causes may induce supra-physiological levels of ROS resulting in lipid peroxidation, sperm DNA fragmentation and apoptosis, and consequently infertility. Several laboratory testing methods can be used in infertile men to diagnose OS. Treatment usually involves antioxidant supplementation and, when possible, elimination of the causative factor. Conclusion: OS is an important cause of male factor infertility. Its assessment provides essential information that can guide treatment strategies aimed at improving the male's reproductive potential. Abbreviations: bp: base-pair; CAT: catalase; LPO: lipid peroxidation; MDA: malondialdehyde; MiOXSYS: Male Infertility Oxidative System; mtDNA: mitochondrial DNA; NAD(PH): nicotinamide adenine dinucleotide (phosphate); NO: nitric oxide; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; ORP: oxidation-reduction potential; OS: oxidative stress; PKA: protein kinase A; PLA2: phospholipase A2; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PUFA: poly-unsaturated fatty acid; ROS: reactive oxygen species; SOD: superoxide dismutase; TAC: total antioxidant capacity; TBA: thiobarbituric acid.
    Matched MeSH terms: Superoxide Dismutase
  2. Nathan FM, Singh VA, Dhanoa A, Palanisamy UD
    BMC Cancer, 2011;11:382.
    PMID: 21871117 DOI: 10.1186/1471-2407-11-382
    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas.
    Matched MeSH terms: Superoxide Dismutase/blood; Superoxide Dismutase/metabolism
  3. Looi ML, Mohd Dali AZ, Md Ali SA, Wan Ngah WZ, Mohd Yusof YA
    Eur J Cancer Prev, 2008 Nov;17(6):555-60.
    PMID: 18941377 DOI: 10.1097/CEJ.0b013e328305a10b
    Free radicals that induced lipid peroxidation and DNA damage have been implicated in many diseases including cancer. Cellular antioxidant defense plays an important role in neoplastic disease to counteract oxidative damage. This study aims to investigate the status of oxidative damage by measuring plasma malondialdehyde (MDA) level and urinary 8-hydroxydeoxyguanosine (8-OHdG), and the level of antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase in patients with cervical intraepithelial neoplasia (CIN) and squamous cell carcinoma (SCC) of the cervix. Urinary 8-OHdG was measured by an enzyme-linked immunosorbent assay kit. MDA and antioxidant enzyme activities were determined by high-performance liquid chromatography and spectrophotometry, respectively. Eighty patients with CIN and SCC of the cervix were recruited and compared with normal controls. Urinary 8-OHdG/creatinine ratio did not show any significant changes in any disease status studied as compared with controls (P=0.803). Plasma MDA was found to be increased in CIN and SCC patients when compared with controls (P=0.002). Glutathione peroxidase activity was increased (P=0.0001) whereas superoxide dismutase and catalase activity was decreased (P=0.019 and 0.0001, respectively) in both CIN and SCC patients when compared with controls. Urinary 8-OHdG may not be a good marker for enhanced oxidative stress in cervical cancer. Oxidative damage as demonstrated by the level of MDA is markedly increased in CIN and SCC patients with changes of enzymatic antioxidants observed.
    Matched MeSH terms: Superoxide Dismutase/blood; Superoxide Dismutase/metabolism
  4. Mohd Amnan MA, Pua TL, Lau SE, Tan BC, Yamaguchi H, Hitachi K, et al.
    PeerJ, 2021;9:e10879.
    PMID: 33614294 DOI: 10.7717/peerj.10879
    Drought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.
    Matched MeSH terms: Superoxide Dismutase
  5. Ahmad A, Dada AC, Usup G, Heng LY
    Mar Pollut Bull, 2014 May 15;82(1-2):26-38.
    PMID: 24725825 DOI: 10.1016/j.marpolbul.2014.03.028
    Median enterococci counts of beach water samples gradually increased at statistically significant levels (χ2: 26.53, df: 4; p<0.0001) with increasing proximity to river influx. The difference in proportion of antibiotic resistant enterococci in beach water and river water samples was statistically significant (p<0.05) for the tested antibiotics with river isolates generally presenting higher resistance frequencies. Virulence genes cyl, esp, gelE and asa were detected at varying frequencies (7.32%, 21.95%, 100% and 63.41% respectively) among river isolates. On the other hand, the prevalence of these genes was lower (0%, 20%, 67.27% and 41.82% respectively) among beach water isolates. Multi-Locus-Sequence-Typing analysis of Enterococcus faecalis presented four sequence types (ST) one of which shared six out of seven tested loci with ST6, a member of the clonal complex of multi-drug resistant strains associated with hospital outbreaks.
    Matched MeSH terms: Superoxide Dismutase/genetics
  6. Ismail M, Al-Naqeep G, Chan KW
    Free Radic. Biol. Med., 2010 Mar 01;48(5):664-72.
    PMID: 20005291 DOI: 10.1016/j.freeradbiomed.2009.12.002
    The antioxidant activities of the thymoquinone-rich fraction (TQRF) extracted from Nigella sativa and its bioactive compound, thymoquinone (TQ), in rats with induced hypercholesterolemia were investigated. Rats were fed a semipurified diet supplemented with 1% (w/w) cholesterol and were treated with TQRF and TQ at dosages ranging from 0.5 to 1.5 g/kg and 20 to 100 mg/kg body wt, respectively, for 8 weeks. The hydroxyl radical (OH(.))-scavenging activity of plasma samples collected from experimental rats was measured by electron spin resonance. The GenomeLab Genetic Analysis System was used to study the molecular mechanism that mediates the antioxidative properties of TQRF and TQ. Plasma total cholesterol and low-density-lipoprotein cholesterol levels were significantly decreased in the TQRF- and TQ-treated rats compared to untreated rats. Feeding rats a 1% cholesterol diet for 8 weeks resulted in a significant decrease in plasma antioxidant capacity, as measured by the capacity to scavenge hydroxyl radicals. However, rats treated with TQRF and TQ at various doses showed significant inhibitory activity toward the formation of OH(.) compared to untreated rats. Upon examination of liver RNA expression levels, treatment with TQRF and TQ caused the up-regulation of the superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 2 (GPX) genes compared to untreated rats (P<0.05). In support of this, liver antioxidant enzyme levels, including SOD1 and GPX, were also apparently increased in the TQRF- and TQ-treated rats compared to untreated rats (P<0.05). In conclusion, TQRF and TQ effectively improved the plasma and liver antioxidant capacity and enhanced the expression of liver antioxidant genes of hypercholesterolemic rats.
    Matched MeSH terms: Superoxide Dismutase/biosynthesis; Superoxide Dismutase/genetics; Superoxide Dismutase-1
  7. John CM, Ramasamy R, Al Naqeeb G, Al-Nuaimi AH, Adam A
    Curr Med Chem, 2012;19(30):5181-6.
    PMID: 23237188
    Gestational diabetes (GD) is a common complication during pregnancy. Metabolic changes in GD affect fetal development and fetal glucose homeostasis. The present study utilized a rat model of GD to evaluate the effects of nicotinamide on diabetic parameters; antioxidant gene expression viz, superoxide dismutase (SOD) and catalase (CAT); reactive oxygen species (ROS) production by neutrophils and enhancement of lymphocyte mediated immune response. Nicotinamide (50, 100 and 200 mg/kg) was orally supplemented to gestational diabetic rats from days 6 through 20 of gestation. After GD induction, the control group had elevated glucose and reduced insulin while nicotinamide (100 & 200 mg/kg) supplementation reversed these changes. The same doses of nicotinamide upregulated mRNA expressions of SOD and CAT genes in liver but reduced the oxidative burst activity of neutrophils in response to phorbol myristate acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (FMLP) or E. coli activation. Nicotinamide (100 & 200 mg/kg) supplementation also increased expression of activated T helper (CD4+CD25+) cells and induced proliferation of splenocytes. These findings provide evidence for utilizing nicotinamide as supplement or adjunct to support existing therapeutic agents for gestational diabetes and in pregnant individuals with weakened immune systems.
    Matched MeSH terms: Superoxide Dismutase/genetics
  8. Perera J, Tan JH, Jeevathayaparan S, Chakravarthi S, Haleagrahara N
    Cell Biosci, 2011;1(1):12.
    PMID: 21711768 DOI: 10.1186/2045-3701-1-12
    Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days), haloperidol alone (2 mg/kg i.p for 21 days), and haloperidol with alpha lipoic acid groups (for 21 days). Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.
    Matched MeSH terms: Superoxide Dismutase
  9. Jayasingh Chellammal HS, Veerachamy A, Ramachandran D, Gummadi SB, Manan MM, Yellu NR
    Biomed Pharmacother, 2019 Jan;109:1454-1461.
    PMID: 30551397 DOI: 10.1016/j.biopha.2018.10.189
    The progressive accumulation of amyloid beta (Aβ) peptide is neurotoxic and leads to Alzheimer's type dementia. Accumulation of Aβ has been associated with dysfunction of hypothalamic-pituitary-adrenal (HPA) axis and elevated pro-inflammatory cytokines. In this study, we investigated the effect of 1`δ-1`-acetoxyeugenol acetate (DAEA), isolated from Alpinia galanga (L.), on Aβ(25-35) induced neurodegeneration in mice. Mice were treated with three different doses of DAEA (12.5 mg/kg, 25 mg/kg and 50 mg/kg) for 28 days. Aβ(25-35) was injected by intracerebroventricular (i.c.v.) injection on the 15th day of 28 days. Open field, water maze and step-down inhibitory tests were performed on the 27th day to determine the habituation memory, spatial learning, and short- and long-term memory, respectively. Acetylcholinesterase (AChE), Corticosterone, biogenic amines (serotonin and dopamine), tumour necrosis factor-α (TNF-α), and antioxidant parameters such as superoxide dismutase, catalase, glutathione peroxidase and vitamin C were evaluated in brain homogenates after behavioural tests to ascertain the cognitive improvement through neuro-immune-endocrine modulation. The DAEA treatment with 25 mg/kg and 50 mg/kg resulted in significant (p < 0.001) improvement of habituation memory and step-down inhibitory avoidance task. In spatial learning, the cognitive improvement was significantly improved (p < 0.001) by reduction in escape latency. In the biochemical study, the significant (p < 0.001) reduction of AChE indicates the preeminent neuroprotection. Corticosterone and TNF-α were significantly (p < 0.01) reduced and biogenic amines were increased with antioxidant markers, which signify the potential influence of DAEA on neuroprotection. Our investigation revealed that the drug DAEA attenuates stress mediated through the HPA axis and regulates the neuroendocrine and neuroimmune function to improve the cognition. DAEA could be a potential lead candidate for the treatment of neurodegeneration.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  10. Ooi TC, Ahmad Munawar M, Mohd Rosli NH, Abdul Malek SNA, Rosli H, Ibrahim FW, et al.
    PMID: 32382294 DOI: 10.1155/2020/5126457
    This study aimed to determine the effects of tropical fruit juice mixture (pomegranate, white guava, and Roselle) on biochemical, behavioral, and histopathological changes of β-amyloid- (Aβ-) induced rats. Formulation 8 (F8) of tropical fruit juice mixture was chosen for this present study due to its high phenolic content and antioxidant capacity. Forty Wistar male rats were divided into five groups: dPBS (sham-operated control), dAβ (Aβ control), JPBS (F8 and PBS), JAβ (F8 and Aβ), and IBFAβ (ibuprofen and Aβ). F8 (5 ml/kg BW), and ibuprofen (10 ml/kg BW) was given orally daily for four weeks before the intracerebroventricular infusion of Aβ for two weeks. Histological analysis and neuronal count of hippocampus tissue in the Cornu Ammonis (CA1) region showed that supplementation with F8 was able to prevent Aβ-induced tissue damage and neuronal shrinkage. However, no significant difference in locomotor activity and novel object recognition (NOR) percentage was detected among different groups at day 7 and day 14 following Aβ infusion. Only effect of time differences (main effect of day) was observed at day 7 as compared to day 14, where reduction in locomotor activity and NOR percentage was observed in all groups, with F (1, 7) = 6.940, p < 0.05 and F (1, 7) = 7.152, p < 0.05, respectively. Besides, the MDA level of the JAβ group was significantly lower (p < 0.01) than that of the dPBS group. However, no significant changes in SOD activity were detected among different groups. Significant reduction in plasma CRH level (p < 0.05) and iNOS expression (p < 0.01) in the brain was detected in the JAβ group as compared to the dAβ group. Hence, our current findings suggest that the tropical fruit juice mixture (F8) has the potential to protect the rats from Aβ-induced neurotoxicity in brain hippocampus tissue possibly via its antioxidant properties and the suppression of iNOS expression and CRH production.
    Matched MeSH terms: Superoxide Dismutase
  11. Rahman MA, Uddin MN, Babteen NA, Alnajeebi AM, Zakaria ZA, Aboelenin SM
    Biomed Res Int, 2021;2021:6978450.
    PMID: 34725640 DOI: 10.1155/2021/6978450
    BACKGROUND: Hatikana is a traditional medicinal plant used to treat inflammation, urolithiasis, goiter, cancer, wounds and sores, gastrointestinal, tumor, tetanus, arthritis, hepatic damage, neurodegeneration, and other ailments. The goal of this study is to investigate the antidiabetic properties of Hatikana extract (HKEx) and to construct the effects of its natural constituents on the genes and biochemical indices that are connected with them.

    METHODS: HKEx was evaluated using GC-MS and undertaken for a three-week intervention in fructose-fed STZ-induced Wistar albino rats at the doses of HKEx50, HKEx100, and HKEx200 mg/kg bw. Following intervention, blood serum was examined for biochemical markers, and liver tissue was investigated for the mRNA expression of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD1) by RTPCR analysis. Most abundant compounds (oleanolic acid, 7α, 28-olean diol, and stigmasterol) from GC-MS were chosen for the network pharmacological assay to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba.

    RESULTS: In vivo results showed a significant (P < 0.05) decrease of blood sugar, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine kinase (CK-MB), and lactate dehydrogenase (LDH) and increase of liver glycogen, glucose load, and serum insulin. Out of three antioxidative genes, catalase (CAT) and superoxide dismutase (SOD1) were found to be few fold increased. Oleanolic acid and stigmasterol were noticed to strongly interact with 27 target proteins. Oleanolic acid interacted with the proteins AKR1B10, CASP3, CASP8, CYP1A2, CYP1A2, HMGB1, NAMPT, NFE2L2, NQO1, PPARA, PTGIR, TOP1, TOP2A, UGT2B10, and UGT2B11 and stigmasterol with ABCA1, ABCG5, ABCG8, CTSE, HMGCR, IL10, CXCL8, NR1H2, NR1H3, SLCO1B1, SREBF2, and TNF. Protein-protein interaction (PPI) analysis revealed the involvement of 25 target proteins out of twenty seven. Cytoscape plugin cytoHubba identified TNF, CXCL8, CASP3, PPARA, SREBF2, and IL10 as top hub genes. Pathway analysis identified 31 KEGG metabolic, signaling, and immunogenic pathways associated with diabetes. Notable degree of PPI enrichment showed that SOD1 and CAT are responsible for controlling signaling networks and enriched pathways.

    CONCLUSION: The findings show that antioxidative genes have regulatory potential, allowing the HKEx to be employed as a possible antidiabetic source pending further validation.

    Matched MeSH terms: Superoxide Dismutase/metabolism
  12. Perwez M, Lau SY, Hussain D, Anboo S, Arshad M, Thakur P
    Colloids Surf B Biointerfaces, 2023 May;225:113241.
    PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241
    Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
    Matched MeSH terms: Superoxide Dismutase
  13. Wei S, Sun B, Liu C, Sokolova I, Waiho K, Fang JKH, et al.
    Sci Total Environ, 2023 Oct 01;893:164836.
    PMID: 37321498 DOI: 10.1016/j.scitotenv.2023.164836
    Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutants in marine organisms. We explored the effects of n-TiO2 and PCP on the mussel Mytilus coruscus in the presence of its natural predator, the swimming crab Portunus trituberculatus. Exposure to n-TiO2, PCP, and predation risk showed interactive effects on antioxidant and immune parameters of the mussels. Elevated activities of catalase (CAT), glutathione peroxidase (GPX), acid phosphatase (ACP) and alkaline phosphatase (AKP), suppressed activity of superoxide dismutase (SOD), lower levels of glutathione (GSH) and increased malondialdehyde (MDA) levels indicated dysregulation of the antioxidant system and immune stress induced by single PCP or n-TiO2 exposure. Integrated biomarker (IBR) response values showed the effect of PCP was concentration dependent. Of the two used n-TiO2 sizes (25 and 100 nm), larger particles induced higher antioxidant and immune disturbances indicating higher toxicity possibly due to higher bioavailability. Compared to single PCP exposure, the combination of n-TiO2 and PCP enhanced the imbalance of SOD/CAT and GSH/GPX and led to elevated oxidative lesions and activation of immune-related enzymes. Overall, the combined impacts of pollutants and biotic stress exhibited a greater magnitude of adverse effects on antioxidant defense and immune parameters in mussels. The toxicological effects of PCP were exacerbated in the presence of n-TiO2, and the deleterious impact of these stressors was further amplified under predator-induced risk after prolonged (28 days) exposure. However, the underlying physiological regulatory mechanisms governing the interplay of these stressors and predatory cues on mussels remain elusive, warranting further investigation.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  14. Haleagrahara N, Julian V, Chakravarthi S
    Cardiovasc Toxicol, 2011 Dec;11(4):373-81.
    PMID: 21796404 DOI: 10.1007/s12012-011-9132-0
    This study investigated the cardioprotective effect of N-acetylcysteine (NAC) on isoproterenol (ISO)-induced cardiotoxicity in rats. Male Sprague-Dawley rats were divided into control, NAC alone (100 mg/kg BW orally for 14 days), ISO-control (85 mg/kg BW), and ISO with NAC (for 14 days). Serum creatine kinase-MB and Lactate dehydrogenase were measured. From the heart homogenate lipid hydroperoxides (LPO), superoxide dismutase (SOD), total glutathione (GSH), and 8-isoprostane (IP) were measured. Histopathological examination of the heart was also carried out. There was a significant increase (P 
    Matched MeSH terms: Superoxide Dismutase/metabolism
  15. Chieng CCY, Daud HM, Yusoff FM, Thompson KD, Abdullah M
    J Fish Dis, 2020 Oct;43(10):1249-1258.
    PMID: 32830331 DOI: 10.1111/jfd.13222
    Groupers are popular aquaculture species in South-East Asia, but their cultivation is affected by infectious disease outbreaks. Mucosa-associated lymphoid tissues provide a first-line defence against pathogens; however, few studies are available relating to cellular or proteomic responses of mucosal immunity in grouper. Skin, gill and intestine were sampled from brown-marbled grouper Epinephelus fuscoguttatus (Forsskål, 1775) at 4 and 96 hr post-infection (hpi) and 7 days post-infection (dpi) following intraperitoneal infection with Vibrio harveyi, and stained with haematoxylin/eosin and Alcian Blue/periodic acid-Schiff. Skin mucus was analysed by 2D-gel electrophoresis, and proteins modulated by the bacterial infection identified. In the infected fish, significant increases in sacciform cells in skin and increased levels of nucleoside diphosphate kinase in mucus were detected at 4 hpi. At 96 hpi, goblet cells containing acidic mucins significantly increased in the intestine, while those containing mixed mucins increased in skin and gills of infected fish. Proteasome subunit alpha type-I and extracellular Cu/Zn superoxide dismutase levels also increased in mucus. Rodlet and mast cells did not appear to respond to the infection. Mucosal tissues of grouper appeared actively involved in response to Vibrio infection. This information may help future research on improving grouper health, production and vaccine development.
    Matched MeSH terms: Superoxide Dismutase-1
  16. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Superoxide Dismutase/genetics
  17. Tan BH, Chor Leow T, Foo HL, Abdul Rahim R
    Biomed Res Int, 2014;2014:469298.
    PMID: 24592392 DOI: 10.1155/2014/469298
    A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172).
    Matched MeSH terms: Superoxide Dismutase/genetics; Superoxide Dismutase/isolation & purification; Superoxide Dismutase/metabolism*; Superoxide Dismutase/chemistry
  18. Bhattamisra SK, Koh HM, Lim SY, Choudhury H, Pandey M
    Biomolecules, 2021 02 20;11(2).
    PMID: 33672590 DOI: 10.3390/biom11020323
    Catalpol isolated from Rehmannia glutinosa is a potent antioxidant and investigated against many disorders. This review appraises the key molecular pathways of catalpol against diabetes mellitus and its complications. Multiple search engines including Google Scholar, PubMed, and Science Direct were used to retrieve publications containing the keywords "Catalpol", "Type 1 diabetes mellitus", "Type 2 diabetes mellitus", and "diabetic complications". Catalpol promotes IRS-1/PI3K/AKT/GLUT2 activity and suppresses Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase) expression in the liver. Catalpol induces myogenesis by increasing MyoD/MyoG/MHC expression and improves mitochondria function through the AMPK/PGC-1α/PPAR-γ and TFAM signaling in skeletal muscles. Catalpol downregulates the pro-inflammatory markers and upregulates the anti-inflammatory markers in adipose tissues. Catalpol exerts antioxidant properties through increasing superoxide dismutase (sod), catalase (cat), and glutathione peroxidase (gsh-px) activity in the pancreas and liver. Catalpol has been shown to have anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis properties that in turn bring beneficial effects in diabetic complications. Its nephroprotective effect is related to the modulation of the AGE/RAGE/NF-κB and TGF-β/smad2/3 pathways. Catalpol produces a neuroprotective effect by increasing the expression of protein Kinase-C (PKC) and Cav-1. Furthermore, catalpol exhibits a cardioprotective effect through the apelin/APJ and ROS/NF-κB/Neat1 pathway. Catalpol stimulates proliferation and differentiation of osteoblast cells in high glucose condition. Lastly, catalpol shows its potential in preventing neurodegeneration in the retina with NF-κB downregulation. Overall, catalpol exhibits numerous beneficial effects on diabetes mellitus and diabetic complications.
    Matched MeSH terms: Superoxide Dismutase
  19. Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah A, et al.
    Adv Med Sci, 2010;55(2):281-8.
    PMID: 21147697 DOI: 10.2478/v10039-010-0046-z
    Chlorella vulgaris (CV), a fresh water alga has been reported to have hypoglycemic effects. However, antioxidant and anti-inflammatory effects of CV in diabetic animals have not been investigated to date. The aim of the present study was to investigate the role of CV in inflammation and oxidative damage in STZ-induced diabetic rats.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  20. Tudave D, Radhakrishnan A, Chakravarthi S, Haleagrahara N
    Inflamm Res, 2011 Oct;60(10):897-907.
    PMID: 21633874 DOI: 10.1007/s00011-011-0349-y
    OBJECTIVES: The study investigated the effect of collagen-induced arthritis in Dark Agouti (DA) rats on the level of C-reactive protein and inflammatory cytokine tumour necrosis factor-alpha (TNF-α).

    SUBJECTS: Female Dark Agouti (DA) rats.

    METHODS: Three different dosages of (2 mg/kg of body weight, 3 mg/kg of body weight and 4 mg/kg of body weight) collagen and complete Freund's adjuvant suspension were tested. After 45 days, serum C-reactive protein, TNF-α, superoxide dismutase and total glutathione assays were done. Radiographic and histopathological changes in the joints were compared.

    RESULTS: All three groups showed signs of arthritic changes, confirmed by histopathological and radiographic changes. Severe arthritic changes were seen in the rats injected with 4 mg/kg of body weight of collagen. There was a significant increase in C-reactive protein, TNF-α, super oxide dismutase and total glutathione levels in the plasma in arthritis rats and the changes were more significant with 4 mg/kg of collagen.

    CONCLUSION: These results demonstrated that the optimal dose to inject to experimental animals in order to get server arthritic changes was 4 mg/kg of collagen with complete Freund's adjuvant suspension. Severe arthritis changes induced significant elevation in plasma C-reactive protein and TNF-α levels.

    Matched MeSH terms: Superoxide Dismutase/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links