Displaying publications 61 - 80 of 260 in total

Abstract:
Sort:
  1. Bomrungnok W, Arai T, Yoshihashi T, Sudesh K, Hatta T, Kosugi A
    Environ Technol, 2020 Nov;41(25):3318-3328.
    PMID: 30987543 DOI: 10.1080/09593330.2019.1608314
    Polyhydroxybutyrate (PHB) is a natural microbial polyester produced by a variety of bacteria and archaea from renewable resources. PHB resembles some petrochemical plastics but is completely biodegradable. It is desirable to identify suitable microbial strains and develop processes that can directly use starch from agricultural wastes without commercial amylase treatment. Here, PHB production using starch from agricultural waste was developed using a newly isolated strain, Bacillus aryabhattai T34-N4. This strain hydrolyzed cassava pulp and oil palm trunk starch and accumulated up to 17 wt% PHB of the cell dry weight. The α-amylase of this strain, AmyA, showed high activity in the presence of cassava pulp starch (69.72 U) and oil palm trunk starch (70.53 U). High expression of amyA was recorded in the presence of cassava pulp starch, whereas low expression was detected in the presence of glucose. These data suggest that starch saccharification by amyA allows strain T34-N4 to grow and directly produce PHB from waste starch materials such as cassava pulp and oil palm trunk starch, which may be used as low-cost substrates.
    Matched MeSH terms: Starch
  2. Sarwono A, Man Z, Bustam MA, Subbarao D, Idris A, Muhammad N, et al.
    Environ Technol, 2018 Jun;39(12):1522-1532.
    PMID: 28524800 DOI: 10.1080/09593330.2017.1332108
    Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10-7 cm2/s at 25°C, from 5.3 to 2.9 × 10-7 cm2/s at 35°C and from 6.2 to 3.8 × 10-7 cm2/s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.
    Matched MeSH terms: Starch
  3. Rahardiyan D, Moko EM, Tan JS, Lee CK
    Enzyme Microb Technol, 2023 Aug;168:110260.
    PMID: 37224591 DOI: 10.1016/j.enzmictec.2023.110260
    Plastic throughout the years is now one of the biggest world commodities and also the largest pollution to have an environmental impact, accumulating in landfills and also leaching into water systems and oceans. Especially with the shift to single-use disposable plastic, evermore positions plastics as the number one novel entity that pollutes the earth. This shift is also consistent in the food packaging industry. Managing plastic waste is still an issue at large, while the process of pyrolysis incineration still requires an obscene amount of energy that also does not resolve the problems with its environmental impact, the cost of mechanical-chemical degradation even outweighs the cost of producing the materials, and biodegradation process is a very slow and long process. Converting to bioplastics is one of the potential solutions to the global plastic issue. This review covers the potentials, limitations, challenges, progress and advancements of bioplastics, especially thermoplastic starch (starch-based bioplastic) in their efforts to replace petroleum plastics in food packaging and smart food packaging, especially for single-use (disposable) food packaging.
    Matched MeSH terms: Starch
  4. Mohamed EA, Ahmad M, Ang LF, Asmawi MZ, Yam MF
    PMID: 26649063 DOI: 10.1155/2015/754931
    In the present study, a 50% ethanolic extract of Orthosiphon stamineus was tested for its α-glucosidase inhibitory activity. In vivo assays of the extract (containing 1.02%, 3.76%, and 3.03% of 3'hydroxy-5,6,7,4'-tetramethoxyflavone, sinensetin, and eupatorin, resp.) showed that it possessed an inhibitory activity against α-glucosidase in normal rats loaded with starch and sucrose. The results showed that 1000 mg/kg of the 50% ethanolic extract of O. stamineus significantly (P < 0.05) decreased the plasma glucose levels of the experimental animals in a manner resembling the effect of acarbose. In streptozotocin-induced diabetic rats, only the group treated with 1000 mg/kg of the extract showed significantly (P < 0.05) lower plasma glucose levels after starch loading. Hence, α-glucosidase inhibition might be one of the mechanisms by which O. stamineus extract exerts its antidiabetic effect. Furthermore, our findings indicated that the 50% ethanolic extract of O. stamineus can be considered as a potential agent for the management of diabetes mellitus.
    Matched MeSH terms: Starch
  5. Yong HS, Mak JW
    Experientia, 1984 Aug 15;40(8):833-4.
    PMID: 6468590
    Glucose phosphate isomerase of subperiodic Brugia malayi was studied by horizontal starch-gel electrophoresis. Two heterophenotypes, each represented by 3 bands of enzyme activity, were found among 38 parasites studied. This finding is attributed to the occurrence of 2 Gpi gene loci.
    Matched MeSH terms: Electrophoresis, Starch Gel
  6. Rosfarizan M, Ariff AB, Hassan MA, Karim MI
    Folia Microbiol (Praha), 1998;43(5):459-64.
    PMID: 9867479
    Direct conversion of gelatinized sago starch into kojic acid by Aspergillus flavus strain having amylolytic enzymes was carried out at two different scales of submerged batch fermentation in a 250-mL shake flask and in a 50-L stirred-tank fermentor. For comparison, fermentations were also carried out using glucose and glucose hydrolyzate from enzymic hydrolysis of sago starch as carbon sources. During kojic acid fermentation of starch, starch was first hydrolyzed to glucose by the action of alpha-amylase and glucoamylase during active growth phase. The glucose remaining during the production phase (non-growing phase) was then converted to kojic acid. Kojic acid production (23.5 g/L) using 100 g/L sago starch in a shake flask was comparable to fermentation of glucose (31.5 g/L) and glucose hydrolyzate (27.9 g/L) but in the 50-L fermentor was greatly reduced due to non-optimal aeration conditions. Kojic acid production using glucose was higher in the 50-L fermentor than in the shake flask.
    Matched MeSH terms: Starch/metabolism*
  7. Amirul AA, Khoo SL, Nazalan MN, Razip MS, Azizan MN
    Folia Microbiol (Praha), 1996;41(2):165-74.
    PMID: 9138312
    A. niger produced alpha-glucosidase, alpha-amylase and two forms of glucoamylase when grown in a liquid medium containing raw tapioca starch as the carbon source. The glucoamylases, which formed the dominant components of amylolytic activity manifested by the organism, were purified to homogeneity by ammonium sulfate precipitation, ion-exchange and two cycles of gel filtration chromatography. The purified enzymes, designated GA1 and GA2, a raw starch digesting glucoamylase, were found to have molar masses of 74 and 96 kDa and isoelectric points of 3.8 and 3.95, respectively. The enzymes were found to have pH optimum of 4.2 and 4.5 for GA1 and GA2, respectively, and were both stable in a pH range of 3.5-9.0. Both enzymes were thermophilic in nature with temperature optimum of 60 and 65 degrees C, respectively, and were stable for 1 h at temperatures of up to 60 degrees C. The kinetic parameters Km and V showed that with both enzymes the branched substrates, starch and amylopectin, were more efficiently hydrolyzed compared to amylose. GA2, the more active of the two glucoamylases produced, was approximately six to thirteen times more active towards raw starches compared to GA1.
    Matched MeSH terms: Starch/metabolism
  8. Madihah MS, Ariff AB, Khalil MS, Suraini AA, Karim MI
    Folia Microbiol (Praha), 2001;46(3):197-204.
    PMID: 11702403
    A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch by Clostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent, i.e. 1.5-2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for alpha-amylase and glucoamylase were found to be at 5.3 and 4.0-4.4, respectively. alpha-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0-8.0 after a 1-d incubation at 37 degrees C. Since C. acetobutylicum alpha-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, the C. acetobutylicum glucoamylase was only stable at pH 4-5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37 degrees C.
    Matched MeSH terms: Starch/metabolism*
  9. Buddrick O, Jones OAH, Hughes JG, Kong I, Small DM
    Food Chem, 2015 Aug 01;180:181-185.
    PMID: 25766816 DOI: 10.1016/j.foodchem.2015.02.044
    Resistant starch has potential health benefits but the factors affecting its formation in bread and baked products are not well studied. Here, the formation of resistant starch in wholemeal bread products was evaluated in relation to the processing conditions including fermentation time, temperature and the inclusion of palm oil as a vitamin source. The effects of each the factor were assessed using a full factorial design. The impact on final starch content of traditional sourdough fermentation of wholemeal rye bread, as well as the bulk fermentation process of wheat and wheat/oat blends of wholemeal bread, was also assessed by enzyme assay. Palm oil content was found to have a significant effect on the formation of resistant starch in all of the breads while fermentation time and temperature had no significant impact. Sourdough fermentation of rye bread was found to have a greater impact on resistant starch formation than bulk fermentation of wheat and wheat blend breads, most likely due the increased organic acid content of the sourdough process.
    Matched MeSH terms: Starch/metabolism
  10. Oladebeye AO, Oshodi AA, Amoo IA, Karim AA
    Food Chem, 2013 Nov 15;141(2):1416-23.
    PMID: 23790933 DOI: 10.1016/j.foodchem.2013.04.080
    Ozone-oxidised starches were prepared from the native starches isolated from white and red cocoyam, and white and yellow yam cultivars. The native and oxidised starches were evaluated for functional, thermal and molecular properties. The correlations between the amount of reacted ozone and carbonyl and carboxyl contents of the starches were positive, as ozone generation time (OGT) increased. Significant differences were obtained in terms of swelling power, solubility, pasting properties and textural properties of the native starches upon oxidation. The DSC data showed lower transition temperatures and enthalpies for retrograded gels compared to the gelatinized gels of the same starch types. The native starches showed CB-type XRD patterns while the oxidised starches resembled the CA-type pattern. As amylose content increased, amylopectin contents of the starches decreased upon oxidation. Similarly, an increase in Mw values were observed with a corresponding decrease in Mn values upon oxidation.
    Matched MeSH terms: Starch/chemistry*
  11. Asmeda R, Noorlaila A, Norziah MH
    Food Chem, 2016 Jan 15;191:45-51.
    PMID: 26258700 DOI: 10.1016/j.foodchem.2015.05.095
    This research was conducted to investigate the effects of different grinding techniques (dry, semi-wet and wet) of milled rice grains on the damaged starch and particle size distribution of flour produced from a new variety, MR263, specifically related to the pasting and thermal profiles. The results indicated that grinding techniques significantly (p<0.05) affected starch damage content and particle size distribution of rice flour. Wet grinding process yields flour with lowest percentage of starch damage (7.37%) and finest average particle size (8.52μm). Pasting and gelatinization temperature was found in the range of 84.45-89.63°C and 59.86-75.31°C, respectively. Dry ground flour attained the lowest pasting and gelatinization temperature as shown by the thermal and pasting profiles. Correlation analysis revealed that percentage of damaged starch granules had a significant, negative relationship with pasting temperature while average particle size distribution had a significant, strong negative relationship with gelatinization temperature.
    Matched MeSH terms: Starch/analysis*
  12. Yeoh SY, Lubowa M, Tan TC, Murad M, Mat Easa A
    Food Chem, 2020 Dec 15;333:127425.
    PMID: 32683254 DOI: 10.1016/j.foodchem.2020.127425
    Zero-salted yellow alkaline noodles (YAN) were immersed in solutions of resistant starch HYLON™ VII (HC) or fruit coating Semperfresh™ (SC) containing a range of salt (NaCl) between 10 and 30% (w/v). The objective was to evaluate the effect of salt-coatings on the textural, handling, cooking, and sensory properties of YAN. Increasing salt in the coatings caused a reduction in optimum cooking time, cooking loss and increase in cooking yield. The mechanical and textural parameters, sensory hardness, springiness and overall sensory acceptability of the salt-coated noodles however decreased with increasing salt application. HC-Na10 and SC-Na10 showed the highest textural and mechanical parameters, sensory hardness and springiness. The differences in the parameters were attributed mainly to the water absorption properties of starch that was affected by salt application. Thus, the quality of salt-coated noodles was dependent mainly on the amounts of salt applied in the coatings rather than on the types of coatings used.
    Matched MeSH terms: Starch/chemistry
  13. Ng SH, Robert SD, Wan Ahmad WA, Wan Ishak WR
    Food Chem, 2017 Jul 15;227:358-368.
    PMID: 28274444 DOI: 10.1016/j.foodchem.2017.01.108
    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties.
    Matched MeSH terms: Starch/metabolism*; Starch/chemistry
  14. Li S, Li C, Yang Y, He X, Zhang B, Fu X, et al.
    Food Chem, 2019 Jun 15;283:437-444.
    PMID: 30722895 DOI: 10.1016/j.foodchem.2019.01.020
    The present study aimed at investigating the effects of octenylsuccinylation and particle size on the emulsifying properties of starch granules as Pickering emulsifiers. Starch spherulites (1-5 μm), native rice starch (5-10 μm), waxy maize starch (10-20 μm) and waxy potato starch (20-30 μm) were modified with octenylsuccinic anhydride. Results showed that octenylsuccinylation caused a significant increase in the contact angle, and there was a weak positive linear correlation with the emulsifying capacity of the starch granules. After octenylsuccinylation, smaller particles of octenylsuccinate-starch granules exhibited better emulsifying properties with smaller droplet size and lower creaming index. Overall, both octenylsuccinylation and particle size have important effects on the emulsifying properties of starch granules as Pickering stabilizers. This study could be useful in the design and development of starch-based Pickering emulsifiers, and provide potential applications in the food and pharmaceutical industries.
    Matched MeSH terms: Starch/chemistry*
  15. Mustapha SNH, Wan JS
    Food Chem, 2022 Mar 30;373(Pt B):131440.
    PMID: 34731804 DOI: 10.1016/j.foodchem.2021.131440
    The objective of this work was to develop a plastic film from food sources with excellent thermal, mechanical, and degradability performance. Corn starch (CS)/nata de coco (NDC) were hybridized with addition of glycerin as plasticizer at different weight ratio and weight percent, respectively. Sample analysis found that the hybridization of CS with NDC improved the film forming properties, mechanical and thermal, degradation properties, as well as hydrophobicity and solubility of the film up to 0.5:0.5 wt hybrid ratio. The properties of the films were highly affected by the homogeneity of the sample during hybridization, with high NDC amount (0.3:0.7 wt CS:NDC) showing poor hydrophobicity, and mechanical and thermal properties. The glycerin content, however, did not significantly affect the hydrophobicity, water solubility, and degradability properties of CS/NDC film. Hybridization of 0.5:0.5 wt CS/NDC with 2 phr glycerin provided the optimum Young's modulus (15.67 MPa) and tensile strength (1.67 MPa) properties.
    Matched MeSH terms: Starch*
  16. Kanmani N, Romano N, Ebrahimi M, Nurul Amin SM, Kamarudin MS, Karami A, et al.
    Food Chem, 2018 Jan 15;239:1037-1046.
    PMID: 28873520 DOI: 10.1016/j.foodchem.2017.07.061
    A 9-week study was conducted to compare dietary corn starch (CS) or tapioca starch (TS), with or without being pre-gelatinized (PG), on the growth, feeding efficiencies, plasma and muscle biochemistry, intestinal short chain fatty acids (SCFA), and liver glycogen of triplicate groups of 20 red hybrid tilapia (Orecohromis sp.). Various pellet characteristics were evaluated, along with their surface and cross sectional microstructure. The PG diets had significantly higher water stability, bulk density, and protein solubility, along with a smoother surface. Tilapia fed the TS diet had lower growth than had all other tilapia, but were significantly improved when diet was pre-gelatinized. In the PG treatments, intestinal SCFA significantly decreased while plasma glucose, cholesterol and triglycerides, as well as liver glycogen, significantly increased. Fish fed the CS diet had significantly more long chain polyunsaturated fatty acid than had those fed by other treatments. Pre-gelatinization may improve fish productivity and offer greater flexibility during aquafeed production.
    Matched MeSH terms: Starch
  17. Johnston C, Ying Leong S, Teape C, Liesaputra V, Oey I
    Food Res Int, 2023 Dec;174(Pt 1):113630.
    PMID: 37986480 DOI: 10.1016/j.foodres.2023.113630
    The trend of incorporating faba bean (Vicia faba L.) in breadmaking has been increasing, but its application is still facing technological difficulties. The objective of this study was to understand the influence of substituting the wheat flour (WF) with 10, 20, 30 and 40 % mass of whole bean flour (FBF) or 10 and 20 % mass of faba bean protein-rich fraction (FBPI) on the quality (volume, specific volume, density, colour, and texture), nutritional composition (total starch, free glucose, and protein contents), and kinetics of in vitro starch and protein digestibility (IVSD and IVPD, respectively) of the breads. Automated image analysis algorithm was developed to quantitatively estimate the changes in the crumb (i.e., air pockets) and crust (i.e., thickness) due to the use of FBF or FBPI as part of the partial substitution of wheat flour. Higher levels of both FBF and FBPI substitution were associated with breads having significant (p starch content and improving the protein content and IVPD of wheat bread. Since bread remains as a staple food due to its convenience, versatility and affordability for individuals and families on a budget, wheat bread enriched with faba bean could be a perfect food matrix to increase daily protein intake.
    Matched MeSH terms: Starch/analysis
  18. Lubowa M, Yeoh SY, Easa AM
    Food Sci Technol Int, 2018 Sep;24(6):476-486.
    PMID: 29600879 DOI: 10.1177/1082013218766984
    This study investigated the influence of pregelatinized high-amylose maize starch and chilling treatment on the physical and textural properties of canned rice noodles thermally processed in a retort. Rice noodles were prepared from rice flour partially substituted with pregelatinized high-amylose maize starch (Hylon VII™) in the ratios 0, 5, 10, and 15% (wt/wt). High-amylose maize starch improved the texture and brightness of fresh (not retorted) noodles. Chilling treatment led to significant (P ≤ 0.05) improvement in the texture of fresh noodles at all levels of substitution with high-amylose starch. The highest hardness was recorded at 15% amylose level in chilled nonretorted noodles. Retort processing induced a major loss of quality through water absorption, retort cooking loss, decreased noodle hardness, and lightness. However, the results showed that amylose and chilling treatment positively reduced the impact of retorting. For each level of amylose substitution, a low retort cooking loss and increased noodle hardness were associated with a chilling treatment. For both chilled and nonchilled noodles, retort cooking loss and hardness increased with increasing levels of amylose substitution.
    Matched MeSH terms: Starch/analysis*
  19. Ojukwu M, Tan HL, Murad M, Nafchi AM, Easa AM
    Food Sci Technol Int, 2023 Dec;29(8):799-808.
    PMID: 36000280 DOI: 10.1177/10820132221121169
    In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.
    Matched MeSH terms: Starch/chemistry
  20. Lin YK, Show PL, Yap YJ, Ariff A, Annuar MSBM, Lai OM, et al.
    Front Chem, 2018;6:448.
    PMID: 30345267 DOI: 10.3389/fchem.2018.00448
    An extractive bioconversion conducted on soluble starch with cyclodextrin glycosyltransferase (CGTase) enzyme in ethylene oxide-propylene oxide (EOPO)/potassium phosphates liquid biphasic system (LBS) to extract gamma-cyclodextrin (γ-CD) was examined. A range of EOPO (with potassium phosphates) molecular weights was screen to investigate the effect of the latter on the partioning efficency of CGTase and γ-CD. The results show that the optimal top phase γ-CD yield (74.4%) was reached in 35.0% (w/w) EOPO 970 and 10.0% (w/w) potassium phosphate with 2.0% (w/w) sodium chloride. A theoretical explanation for the effect of NaCl on γ-CD was also presented. After a 2 h bioconversion process, a total of 0.87 mg/mL concentration of γ-CD was produced in the EOPO/ phosphates LBS top phase. After the extraction of top phase from LBS, four continuous repetitive batches were successfully conducted with relative CGTase activity of 1.00, 0.86, 0.45, and 0.40 respectively.
    Matched MeSH terms: Starch
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links