Displaying publications 801 - 820 of 2693 in total

Abstract:
Sort:
  1. Xu Y, Zhang X, Fu Z, Dong Y, Yu Y, Liu Y, et al.
    Stem Cells Dev, 2024 Nov;33(21-22):616-629.
    PMID: 39155804 DOI: 10.1089/scd.2024.0072
    Heart failure (HF) is still the main cause of mortality worldwide. This study investigated the characteristics of human pericardial fluid-derived cells (hPFCs) and their effects in treating doxorubicin (DOX)-induced HF rats through intrapericardial injection. hPFCs were isolated from patients who underwent heart transplantation (N = 5). These cells that primarily expressed SCA-1, NANOG, and mesenchymal markers, CD90, CD105, and CD73, were able to form adipocytes, osteoblasts, and cardiomyocytes in vitro. Passage 3 hPFCs (2.5 × 105 cells/heart) were injected into the pericardial cavity of the DOX-injured rat hearts, significantly improving cardiac functions after 4 weeks. The tracked and engrafted red fluorescent protein-tagged hPFCs coexpressed cardiac troponin T and connexin 43 after 4 weeks in the host myocardium. This observation was also coupled with a significant reduction in cardiac fibrosis following hPFC treatment (P < 0.0001 vs. untreated). The elevated inflammatory cytokines interleukin (IL)-6, IL-10, and tumor necrosis factor-α in the DOX-treated hearts were found to be significantly reduced (P < 0.001 vs. untreated), while the regional proangiogenic vascular endothelial growth factor A (VEGFA) level was increased in the hPFC-treated group after 4 weeks (P < 0.05 vs. untreated). hPFCs possess stem cell characteristics and can improve the cardiac functions of DOX-induced HF rats after 4 weeks through pericardial administration. The improvements were attributed to a significant reduction in cardiac fibrosis, inflammation, and elevated regional proangiogenesis factor VEGFA, with evidence of cellular engraftment and differentiation in the host myocardium.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  2. Seyam S, Choukaife H, Al Rahal O, Alfatama M
    Int J Biol Macromol, 2024 Nov;281(Pt 4):136549.
    PMID: 39401622 DOI: 10.1016/j.ijbiomac.2024.136549
    Colon-targeted delivery offers several benefits for oral protein delivery, such as low proteolytic enzyme activity, a natural pH environment, and extended residence time, which improve the bioavailability of the encapsulated protein. Therefore, we hypothesize that developing a novel colonic nanocarrier system, featuring modified chitosan that is soluble at physiological pH and coated with a colon-degradable polymer, will provide an effective delivery system for oral insulin. This study aims to synthesize insulin-loaded pectin-trimethyl chitosan nanoparticles (Ins-P-TMC-NPs) as an oral insulin delivery system and to evaluate its efficacy both in vitro and in vivo. N-trimethyl chitosan (TMC), synthesized via a methylation method, was used to prepare insulin-TMC nanoparticles coated with pectin via the ionic gelation method. The nanoparticles were characterized for their physicochemical properties, cumulative release profile, and surface morphology. The in vitro biological cytotoxicity and cellular uptake of the nanoparticles were evaluated against HT-29 cells. The in vivo blood glucose-lowering effect and histological toxicity were assessed in diabetic male Sprague-Dawley rats. The results showed that Ins-P-TMC-NPs were spherical, with an average size of 379.40 ± 40.26 nm, a polydispersity index of 24.10 ± 1.03 %, a zeta potential of +17.20 ± 0.52 mV, and a loading efficiency of 83.21 ± 1.23 %. Compared to uncoated TMC nanoparticles, Ins-P-TMC-NPs reduced insulin loss in simulated gastrointestinal fluid by approximately 67.23 ± 0.97 % and provided controlled insulin release in simulated colonic fluid. In vitro bioactivity studies revealed that Ins-P-TMC-NPs were non-toxic, with cell viability of 91.12 ± 0.91 % after 24 h of treatment, and exhibited high cellular uptake in the HT-29 cell line with a fluorescence intensity of 37.80 ± 2.40 after 4 h of incubation. Furthermore, the in vivo study demonstrated a sustained reduction in blood glucose levels after oral administration of Ins-P-TMC-NPs, peaking after 8 h with a blood glucose reduction of 87 ± 1.03 %. Histological sections showed no signs of toxicity when compared to those of healthy rats. Overall, the developed colon-targeted oral insulin delivery system exhibits strong potential as a candidate for effective oral insulin administration.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  3. Dewani AP, Rab SO, Tripathi P, Shrivastava S, Tripathi R, Tripathi AS, et al.
    Indian J Pharmacol, 2024 May 01;56(3):178-185.
    PMID: 39078181 DOI: 10.4103/ijp.ijp_562_23
    OBJECTIVE: In the present study, the effect of sildenafil on the pharmacokinetics of metformin was studied in experimental rats, and we also postulated the molecular mechanism by performing molecular docking studies.

    MATERIALS AND METHODS: Analysis of metformin and sildenafil (SIL) from rat plasma was done by high performance liquid chromatography. Optimum chromatographic separation and quantification of MET, SIL and Cetirizine was achieved on Phenomenex EVO C18 column with triethyl amine (0.3%): Methanol: Acetonitrile (70:05:25 v/v) as mobile phase maintaining flow rate of 1 ml/min, the detector was tuned at 224 nm. The extraction of MET and sildenafil from rat plasma was achieved by solid-phase extraction using Strata-X cartridges. The method was validated as per the ICH guidelines. For docking studies, the crystal structure of organic cation transporter 1 (OCT1) protein and multidrug and toxin extrusion (MATE) protein (5XJJ) were downloaded from the PubChem database. The docking study was performed by PyRx virtual screening software, and the results were analyzed by BIOVIA Discovery Studio.

    RESULTS: The validation of HPLC method was done, intraday and interday precision study of HPLC method demonstrated %RSD values less than 5%, the extraction recovery for MET and SIL were near to 80 % for low, medium and high QC samples. The plasma stability of MET and SIL showed % RSD values <10% for low, medium, and high QC samples. A sensitivity study for MET and SIL in rat plasma suggested a lower limit of quantification values of 8 and 10 ng/mL, respectively. The pharmacokinetic parameters were recorded, Cmax of experimental and control rats was 611.2 and 913.2 ng/mL; t1/2 1.66 and 1.98, AUC (0-t) 1637.5 and 2727.24, AUC (0-∞) 1832.38 and 2995.24 for MET. The results suggested that the Cmax of MET in experimental rats (MET + SIL) was 33.07% lower than the control (MET only) and also the t1/2 was 0.32 h shorter. Docking analysis suggested a higher binding affinity of sildenafil with MATE protein (5XJJ) compared to OCT1, suggesting possible involvement of MATE family proteins for pharmacokinetic alterations of MET.

    CONCLUSIONS: The HPLC and solid-phase extraction method were developed and applied successfully for the pharmacokinetics of MET and SIL. Intake of SIL altered the pharmacokinetics of MET in rats. Molecular docking studies suggested the involvement of MATE family proteins for alterations of MET pharmacokinetics.

    Matched MeSH terms: Rats, Wistar; Rats
  4. Leong XF, Salimon J, Mustafa MR, Jaarin K
    Malays J Med Sci, 2012 Jan;19(1):20-9.
    PMID: 22977371
    BACKGROUND: Oxidative stress is associated with the pathogenesis of cardiovascular diseases. The process of deep-fat frying in dietary cooking oil plays a role in the generation of free radicals. In this study, palm olein heated to 180 °C was tested for its effect on the activity of blood pressure-regulating enzymes and lipid peroxidation.

    METHODS: Forty-two adult male Sprague-Dawley rats were equally assigned into 6 groups.The first group was fed with normal rat chow as the control group, and the subsequent groups were fed with rat chow fortified with 15% weight/weight of the following: fresh palm olein, palm olein heated once, palm olein heated twice, palm olein heated 5 times, or palm olein heated 10 times. The duration of feeding was 6 months. Fatty acid analyses of oil were performed using gas chromatography. Peroxide values were determined using standard titration. Plasma was collected for biochemical analyses.

    RESULTS: Repeatedly heated palm olein increased the levels of peroxide, angiotensin-converting enzyme, and lipid peroxidation as well as reduced the level of heme oxygenase. Fresh palm olein and palm olein heated once had lesser effects on lipid peroxidation and a better effect on the activity of blood pressure-regulating enzymes than repeatedly heated palm olein.

    CONCLUSION: Repeatedly heated palm olein may negatively affect the activity of blood pressure-regulating enzymes and increase lipid peroxidation.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  5. Lah EF, Ahamad M, Haron MS, Ming HT
    Asian Pac J Trop Biomed, 2012 Mar;2(3):223-7.
    PMID: 23569902 DOI: 10.1016/S2221-1691(12)60046-X
    OBJECTIVE: To establish a polymerase chain reaction (PCR) technique based on cytochrome b (cytb) gene of mitochondria DNA (mtDNA) for blood meal identification.

    METHODS: The PCR technique was established based on published information and validated using blood sample of laboratory animals of which their whole gene sequences are available in GenBank. PCR was next performed to compile gene sequences of different species of wild rodents. The primers used were complementary to the conserved region of the cytb gene of vertebrate's mtDNA. A total of 100 blood samples, both from laboratory animals and wild rodents were collected and analyzed. The obtained unknown sequences were compared with those in the GenBank database using BLAST program to identify the vertebrate animal species.

    RESULTS: Gene sequences of 11 species of wild animals caught in 9 localities of Peninsular Malaysia were compiled using the established PCR. The animals involved were Rattus (rattus) tanezumi, Rattus tiomanicus, Leopoldamys sabanus, Tupaia glis, Tupaia minor, Niviventor cremoriventor, Rhinosciurus laticaudatus, Callosciurus caniseps, Sundamys muelleri, Rattus rajah and Maxomys whiteheadi. The BLAST results confirmed the host with exact or nearly exact matches (>89% identity). Ten new gene sequences have been deposited in GenBank database since September 2010.

    CONCLUSIONS: This study indicates that the PCR direct sequencing system using universal primer sets for vertebrate cytb gene is a promising technique for blood meal identification.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  6. Ahmad AH, Ismail Z, Than M, Ahmad A
    Malays J Med Sci, 2008 Jan;15(1):13-22.
    PMID: 22589610 MyJurnal
    The potential of ketamine, an N-methyl D-aspartate (NMDA) receptor antagonist, in preventing central sensitization has led to numerous studies. Ketamine is increasingly used in the clinical setting to provide analgesia and prevent the development of central sensitization at subanaesthetic doses. However, few studies have looked into the potential of ketamine in combination with stress-induced analgesia. This study looks at the effects of swim stress, which is mediated by opioid receptor, on ketamine analgesia using formalin test. Morphine is used as the standard analgesic for comparison. Adult male Sprague-Dawley rats were assigned to 6 groups: 3 groups (stressed groups) were given saline 1ml/kg intraperitoneally (ip), morphine 10mg/kg ip or ketamine 5mg/kg ip and subjected to swim stress; 3 more groups (non-stressed groups) were given the same drugs without swim stress. Formalin test, which involved formalin injection as the pain stimulus and the pain score recorded over time, was performed on all rats ten minutes after cessation of swimming or 30 minutes after injection of drugs. Combination of swim stress and ketamine resulted in complete analgesia in the formalin test which was significantly different from ketamine alone (p<0.05) and saline with stress (p<0.01). There is no significant difference between ketamine stressed and morphine stressed. These results indicate that ketamine and swim stress act synergistically to produce profound analgesia in the formalin test. This suggests that in the clinical setting, under stressful situations such as operative stress, ketamine is capable of producing profound analgesia at a subanaesthetic dose.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  7. Islam MN, Sulaiman SA, Kapitonova MY, Jamallullail SM
    Malays J Med Sci, 2007 Jan;14(1):23-7.
    PMID: 22593648
    An indigenous contraceptive herbal formulation consisting of a mixture of Lepidagathis longifolia, Palaquium sp and Phyllagathis rotundifolia is being used by the Temuan Aborigins of Malaysia. Although the previous studies demonstrated that this contraceptive herbal formulation causes anovulatory estrous cycle, altered circulating hormone levels and fetal resorption in rats, but the effects of this formulation on the gonadotrphs of the pituitary gland are yet to be evaluated. The present study was designed to observe the morphometric changes of the gonadotrophs and the plasma concentrations of follicle stimulating hormone and leutinizing hormone. Thirty five Sprague-Dawley adult female rats were randomly divided into 5 groups. Experimental animals were given a combined herbal extract or individual herbal extract at a dose of 540 mg/kg/day subcutaneously for 7 days. Immunostained gonadotrophs were studied by using image analyzer. FSH and LH serum concentrations were determined using RIA. The FSH and LH concentrations were low in animals that received combined herbal extract (p<0.01). FSH concentration was noted to be significantly low in animals that received P. rotundifolia (p<0.05). The mean cell area and cell density of gonadotrophs of animals that received combined herbal extract were significantly low compared to control group (p<0.05). It was concluded that the herbal extracts do suppress the production of gonaotrophins along with the demonstrable suppresive effect on the FSH cells.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  8. Abbas SA, Khan A, Fatima M, Kalusalingam A, Kanakal MM, Inamdar SK, et al.
    PMID: 38357954 DOI: 10.2174/0118715230285370240131111539
    BACKGROUND: Seeds of plant Scaphium affine are traditionally used by the healers of "India" for the treatment of piles.

    OBJECTIVES: The primary objective of the study was to assess the anti-hemorrhoidal potential of the ethanolic seed extract of Scaphium affine.

    METHODS: After the soxhlet extraction method, the seed extract from Scaphium affine was first submitted to phytochemical standardization and then GC-MS analysis. Rats were given Croton oil and Jatropha oil to develop hemorrhoids, and Scaphium affine seed extract (ESA) was administered orally for 5 days and 3 days, respectively, at doses of 1000 and 500 mg/kg. The Rectoanal coefficient (RAC) was calculated as an inflammatory marker. The hemorrhoidal tissues were also subjected to cytokine profiling, biochemical estimation and histopathology.

    RESULTS: ESA demonstrated the presence of flavonoids, saponins, phytosterols, phenols, and tannins. GCMS analysis elucidated the presence of hexadecanoic acid 2 hydroxy -1,3 propane diyl ester,9 Octadecanoic acid ethyl ester, Cyclohexane 1,4 di methyl cis, Farnesol isomer,1, E-11, Z-13 octa decatriene, Stigmasterol, N-(5 ethyl -1,3,4-thiadiazol-yl) benzamide, N, N Dinitro 1,3,5,7 tetraza bicyclo 93,3,1) as major phytoconstituents. The results depicted more potent anti-hemorrhoidal activity of ESA at 1000 mg/kg, p.o., which was evident through a decrease in RAC. A significant decline in the levels of IL-1β, IL-6, and TNF-α expression was observed, along with the restoration of altered antioxidants and enzymes. Histopathological analysis confirmed the tissue recovery as it revealed minimal inflammation and decreased dilated blood vessels in treated animals.

    CONCLUSION: Based on the results it can be concluded that seeds of Scaphium affine showed significant anti-hemorrhoid agents which may be attributed to their anti-inflammatory and anti-oxidant potential due to the presence of certain phytoconstituents in it. The study also supports the traditional use of seeds of Scaphium affine for the first time in the treatment of hemorrhoids.

    Matched MeSH terms: Rats, Wistar; Rats
  9. Siwi K, Tejosukmono A, Anggorowati N, Arfian N, Yunus J
    Med J Malaysia, 2024 Aug;79(Suppl 4):23-30.
    PMID: 39215411
    INTRODUCTION: Muscle health in diabetes mellitus (DM) is often neglected, which leads to muscle wasting. Increased reactive oxygen species in DM could decrease antioxidant enzymes such as superoxide dismutase-1 (SOD-1) and -2 (SOD-2) and inhibit calcineurin (CN) and PGC-1α signalling pathways. Chlorogenic acid (CGA) is known as a potent antioxidant and activators of CN and PGC-1α. This study aimed to determine the effect of CGA on mRNA expressions of SOD-1, SOD-2, CN and PGC-1α in inhibiting the progression of DM to muscle wasting.

    MATERIALS AND METHODS: This study was conducted at Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada starting on July 20th, 2020. A total of 24 male Wistar rats were randomly divided into six groups (four rats per group), i.e., control, DM 1.5 months (DM1.5), and DM 2 months (DM2); and DM groups treated with CGA in three different doses, namely CGA1 (12.5 mg/kg BW), CGA2 (25 mg/kg BW), and CGA3 (50 mg/kg BW). Control group was only injected with normal saline, while diabetic model was induced by intraperitoneal injection of streptozotocin. Blood glucose levels were measured twice (one week after diabetic induction and before termination). The soleus muscle tissue was harvested to analyse the mRNA expressions of SOD-1, SOD- 2, CN and PGC-1α using RT-PCR. In addition, the tissue samples were stained with immunohistochemistry for CN and haematoxylin-eosin (HE) for morphologic analysis under light microscopy.

    RESULTS: The mRNA expressions of SOD-1 and SOD-2 in the CGA1 group were relatively higher compared to the DM2 groups. The mRNA expression of CN in the CGA1 group was significantly higher compared to the DM2 group (p = 0.008). The mRNA expression of PGC-1α in the CGA1 group was significantly higher compared to the DM2 group (p = 0.025). Immunohistochemical staining showed that CNimmunopositive expression in the CGA1 group was more evident compared to the other groups. Haematoxylin-eosin staining showed that muscle tissue morphology in the CGA1 group was similar to that in the control group.

    CONCLUSION: Chlorogenic acid at a dose of 12.5 mg/kg BW shows lower blood glucose level, good skeletal muscle tissue morphology and higher mRNA expressions of SOD-1, SOD-2, CN and PGC-1α compared to the DM groups.

    Matched MeSH terms: Rats, Wistar; Rats
  10. Zahra F, Sari DCR, Yuniartha R, Alex, Thamrin MM, Melindah T, et al.
    Med J Malaysia, 2024 Aug;79(Suppl 4):31-37.
    PMID: 39215412
    INTRODUCTION: Ischaemic stroke induces oxidative stress with SOD2 downregulation, and BAX upregulation producing apoptosis. Vitamin D is a fat-soluble hormone that has a neuroprotective effect. The aim of this study is to elucidate the role of vitamin D in memory function, oxidative stress and apoptosis in transient global brain schaemic injury (TGBII) model.

    MATERIALS AND METHODS: TGBII was performed in male Wistar rats (3 to 5 months, 150 to 300 g) which underwent bilateral common carotid artery occlusion (BCCAO) for 20 minutes, then reperfused for 10 days (BCCAO group, n = 6). Two groups of BCCAO were treated with intraperitoneal injection of calcitriol 0.125 μg/kgBW (VD1 group) and 0.5 μg/kgBW (VD2 group). The spatial memory function was tested using a probe test with Morris water maze (MWM). mRNA expression of BAX and SOD2 were assessed by the RT-PCR method. Meanwhile, immunohistochemical staining was used for identification of SOD2 protein. Statistical analysis is tested using one-way ANOVA followed by post-hoc LSD.

    RESULTS: MWM showed a shorter duration in target quadrant of BCCAO group than the SO group, which is associated with BAX upregulation and SOD2 downregulation. The VDtreated groups had longer duration probe test compared to BCCAO. Furthermore, VD-treated groups had a longer duration in probe test with lower mRNA expression of BAX and higher expression of SOD2. However, there was no significant difference in VD1 and VD2. Immunostaining showed a reduced SOD2 signal in pyramidal cell of CA1 area in BCCAO group and ameliorated in VD1 and VD2 groups.

    CONCLUSION: Vitamin D ameliorates memory function and attenuates oxidative stress and apoptosis in the TGBII model.

    Matched MeSH terms: Rats, Wistar; Rats
  11. Omotoso GO, Olajide OJ, Gbadamosi IT, Rasheed MA, Izuogu CT
    Malays J Med Sci, 2018 Mar;25(2):50-63.
    PMID: 30918455 DOI: 10.21315/mjms2018.25.2.6
    Background: This study explored the efficacy of kolaviron-a biflavonoid complex isolated from the seeds of Garcinia kola-in protecting against cuprizone (CPZ)-induced demyelination in both the prefrontal cortex and the hippocampus of Wistar rats.

    Methodology: Thirty rats were treated to receive 0.5 mL phosphate-buffered saline (group A, control), 0.5 mL corn oil (group B), 0.2% CPZ (group C), for 6 weeks, 0.2% CPZ for 3 weeks and then 200 mg/kg of Kv for 3 weeks (group D), or 200 mg/kg of Kv for 3 weeks followed by 0.2% CPZ for 3 weeks (group E). Rats were assessed for exploratory functions and anxiety-like behaviour before being euthanised and perfused transcardially with 4% paraformaldehyde. Prefrontal and hippocampal thin sections were stained in hematoxylin and eosin and cresyl fast violet stains.

    Results: CPZ-induced demyelination resulted in behavioural impairment as seen by reduced exploratory activities, rearing behaviour, stretch attend posture, center square entry, and anxiogenic characteristics. Degenerative changes including pyknosis, karyorrhexis, neuronal hypertrophy, and reduced Nissl integrity were also seen. Animals treated with Kv showed significant improvement in behavioural outcomes and a comparatively normal cytoarchitectural profile.

    Conclusion: Kv provides protective roles against CPZ-induced neurotoxicity through prevention of ribosomal protein degradation.

    Matched MeSH terms: Rats, Wistar; Rats
  12. Ekanem TB, Ekong MB, Eluwa MA, Igiri AO, Osim EE
    Malays J Med Sci, 2015 12 31;22(4):17-22.
    PMID: 26715904
    BACKGROUND: Calabash chalk, a kaolin-base substance is a common geophagic material mostly consumed by pregnant women. This study investigated its effect on the histomorphology of the foetal cerebral cortex.

    METHODS: Twelve gestating Wistar rats were divided equally into groups 1 and 2. On pregnancy day seven (PD7), group 2 animals were administered 200 mg/kg body weight of calabash chalk suspension, while group 1 animals served as the control and received 1 ml of distilled water, by oral gavages and for 14 days (PD7-PD20). On PD21, the dams were sacrificed, and the foetuses removed, examined for gross malformations, weighed and culled to two foetuses per mother. Their whole brains were excised, weighed and preserved using 10% buffered formalin, and routinely processed by haematoxylin and eosin, and Luxol fast blue methods.

    RESULTS: The foetuses showed no morphological change, but their mean body weights was higher (p=0.0001). Histomorphological sections of the cerebral cortex showed hypertrophy and hyperplasia of cells in all the cortical layers, with less demonstrated Nissl and higher (p=0.001) cellular population compared with the control group.

    CONCLUSION: Calabash chalk cause body weight increase and histomorphological changes in the cerebral cortex of foetuses.

    Matched MeSH terms: Rats, Wistar; Rats
  13. Budin SB, Kho JH, Lee JH, Ramalingam A, Jubaidi FF, Latif ES, et al.
    Malays J Med Sci, 2017 Dec;24(6):50-57.
    PMID: 29379386 DOI: 10.21315/mjms2017.24.6.6
    Background: Nicotine is a major toxic and hazardous component of cigarette smoke, and it has been widely used in nicotine replacement therapy (NRT). This study was aimed to investigate the effects of chronic low-dose nicotine on sperm characteristics and reproductive organ integrity in adolescent male Sprague-Dawley rats.

    Methods: Twelve rats were equally divided into two groups. Group I received normal saline, and group II received 0.6 mg/kg body weight nicotine intraperitoneally for 28 consecutive days. At the end of the experimental period, sperm was collected for sperm characteristic evaluation, and the testes and prostate were isolated for biochemical and morphological analysis. The effects of nicotine on the body and reproductive organ weights of the animals were evaluated.

    Results: Chronic nicotine treatment significantly (P < 0.05) altered the sperm count, motility, viability, and morphology, and remarkably increased the malondialdehyde (P < 0.001) and advanced oxidation protein product (P < 0.05) levels in the testes and prostate of nicotine-treated group compared to control group. Moreover, nicotine caused a significant decrease (P < 0.05) in the superoxide dismutase activity of the testes. No significant differences were observed in the reduced glutathione level in both of the testes and prostate of nicotine group compared with control group. Nicotine also induced histopathological alteration in the testes.

    Conclusion: A low-dose nicotine exposure at 0.6 mg/kg caused detrimental effects on sperm characteristics and induced oxidative stress in the testes and prostate.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  14. Chin TY, Kiat SS, Faizul HG, Wu W, Abdullah JM
    Malays J Med Sci, 2017 Mar;24(1):31-39.
    PMID: 28381927 MyJurnal DOI: 10.21315/mjms2017.24.1.4
    BACKGROUND: The neuroprotective role of minocycline in the treatment of brachial plexus injury is controversial.

    OBJECTIVE: To study the neuroprotective effect of minocycline via different routes in adult Sprague Dawley rats with brachial plexus injury.

    METHODS: The C7 nerve roots of the animals were avulsed via an anterior extravertebral approach. Traction force was used to transect the ventral motor nerve roots at the preganglionic level. Intraperitoneal and intrathecal minocycline (50 mg/kg for the first week and 25 mg/kg for the second week) were administered to promote motor healing. The spinal cord was harvested six weeks after the injury, and structural changes following the avulsion injury and pharmacological intervention were analysed.

    RESULTS: Motor neuron death and microglial proliferation were observed after the administration of minocycline via two different routes (intraperitoneal and intrathecal) following traumatic avulsion injury of the ventral nerve root. The administration of intraperitoneal minocycline reduced the microglia count but increased the motor neuron count. Intrathecal minocycline also reduced the microglial count, with a greater reduction than in the intraperitoneal group, but it decreased the motor neuron count.

    CONCLUSIONS: Intraperitoneal minocycline increased motor neuron survival by inhibiting microglial proliferation following traumatic avulsion injury of the nerve root. The inhibitory effect was augmented by the use of intrathecal minocycline, in which the targeted drug delivery method increased the bioavailability of the therapeutic agent. However, motor neuron survival was impaired at a higher concentration of minocycline via the intrathecal route due to the more efficient method of drug delivery. Microglial suppression via minocycline can have both beneficial and damaging effects, with a moderate dose being beneficial as regards motor neuron survival but a higher dose proving neurotoxic due to impairment of the glial response and Wallerian degeneration, which is a pre-requisite for regeneration.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  15. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Peptides, 2008 Oct;29(10):1773-80.
    PMID: 18603328 DOI: 10.1016/j.peptides.2008.05.017
    Angiotensin II is known to act primarily on the angiotensin AT(1) receptors to mediate its physiological and pathological actions. Des-aspartate-angiotensin I (DAA-I) is a bioactive angiotensin peptide and have been shown to have contrasting vascular actions to angiotensin II. Previous work in this laboratory has demonstrated an overwhelming vasodepressor modulation on angiotensin II-induced vasoconstriction by DAA-I. The present study investigated the involvement of the AT(1) receptor in the actions of DAA-I on angiotensin II-induced vascular actions in the renal vasculature of normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and streptozotocin (STZ)-induced diabetic rats. The findings revealed that the angiotensin receptor in rat kidney homogenate was mainly of the AT(1) subtype. The AT(1) receptor density was significantly higher in the kidney of the SHR. The increase in AT(1) receptor density was also confirmed by RT-PCR and Western blot analysis. In contrast, AT(1) receptor density was significantly reduced in the kidney of the streptozotocin-induced diabetic rat. Perfusion with 10(-9)M DAA-I reduced the AT(1) receptor density in the kidneys of WKY and SHR rats suggesting that the previously observed vasodepressor modulation of the nonapeptide could be due to down-regulation or internalization of AT(1) receptors. RT-PCR and Western blot analysis showed no significant changes in the content of AT(1) receptor mRNA and protein. This supports the suggestion that DAA-I causes internalization of AT(1) receptors. In the streptozotocin-induced diabetic rat, no significant changes in renal AT(1) receptor density and expression were seen when its kidneys were similarly perfused with DAA-I.
    Matched MeSH terms: Rats, Inbred SHR; Rats, Inbred WKY; Rats
  16. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Regul. Pept., 2005 Jul 15;129(1-3):213-9.
    PMID: 15927718
    The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.
    Matched MeSH terms: Rats, Inbred SHR; Rats, Inbred WKY; Rats
  17. Pung YF, Chilian WM, Bennett MR, Figg N, Kamarulzaman MH
    Am J Physiol Heart Circ Physiol, 2017 Mar 01;312(3):H541-H545.
    PMID: 27986661 DOI: 10.1152/ajpheart.00653.2016
    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia.NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN.
    Matched MeSH terms: Rats, Inbred Strains*; Rats
  18. Khan MA, Sattar MA, Abdullah NA, Johns EJ
    Acta Pharmacol Sin, 2008 Feb;29(2):193-203.
    PMID: 18215348 DOI: 10.1111/j.1745-7254.2008.00727.x
    This study examined whether alpha1B-adrenoceptors are involved in mediating adrenergically-induced renal vasoconstrictor responses in rats with pathophysiological and normal physiological states.
    Matched MeSH terms: Rats, Inbred SHR; Rats, Inbred WKY; Rats
  19. Sundaram A, Siew Keah L, Sirajudeen KN, Singh HJ
    Hypertens Res, 2013 Mar;36(3):213-8.
    PMID: 23096233 DOI: 10.1038/hr.2012.163
    Although oxidative stress has been implicated in the pathogenesis of hypertension in spontaneously hypertensive rats (SHRs), there is little information on the levels of primary antioxidant enzymes status (AOEs) in pre-hypertensive SHR. This study therefore determined the activities of primary AOEs and their mRNA levels, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and total antioxidant status (TAS) in whole kidneys of SHR and age-matched Wistar-Kyoto (WKY) rats aged between 2 and 16 weeks. Compared with age-matched WKY rats, catalase (CAT) activity was significantly higher from the age of 2 weeks (P<0.001) and glutathione peroxide (GPx) activity was lower from the age of 3 weeks (P<0.001) in SHR. CAT mRNA levels were significantly higher in SHR aged 2, 4, 6 and 12 weeks. GPx mRNA levels were significantly lower in SHR at 8 and 12 weeks. Superoxide dismutase activity or its mRNA levels were not different between the two strains. H2O2 levels were significantly lower in SHR from the age of 8 weeks (P<0.01). TAS was significantly higher in SHR from the age of 3 weeks (P<0.05). MDA levels were only significantly higher at 16 weeks of age in the SHR (P<0.05). The data suggest that altered renal CAT and GPx mRNA expression and activity precede the development of hypertension in SHR. The raised CAT activity perhaps contributes to the higher TAS and lower H2O2 levels in SHR. In view of these findings, the precise role of oxidative stress in the pathogenesis of hypertension in SHR needs to be investigated further.
    Matched MeSH terms: Rats, Inbred SHR; Rats, Inbred WKY; Rats
  20. Newaz MA, Nawal NN
    Clin Exp Hypertens, 1999 Nov;21(8):1297-313.
    PMID: 10574414
    The aim of this study was to determine the effects of gamma tocotrienol on lipid peroxidation and total antioxidant status of spontaneously hypertensive rats (SHR), comparing them with normal Wistar Kyoto (WKY) rats. SHR were divided into three groups and treated with different doses of gamma tocotrienol (gamma1, 15 mg/kg diet; gamma2, 30 mg/kg diet and gamma3, 150 mg/kg diet). Normal WKY and untreated SHR were used as normal (N) and hypertensive control (HC). Blood pressure were recorded every fortnightly for three months. At the end of the trial, animals were killed and measurement of plasma total antioxidant status, plasma superoxide dismutase (SOD) activity and lipid peroxide levels in plasma and blood vessels were carried out following well established methods. Study shows that lipid peroxides were significantly higher in hypertensive plasma and blood vessels compared to that of normal rats (Plasma- N: 0.06+/-0.01, HC: 0.13+/-0.008; p<0.001, B1. Vessels - N: 0.47+/-0.17, HC: 0.96+/-0.37; p<0.001). SOD activity was significantly lower in hypertensive than normal rats (N = 148.58+/-29.56 U/ml, HC = 110.08+/-14.36 U/ml; p = 0.014). After three months of antioxidant trial with gamma-tocotrienol, it was found that all the treated groups have reduced plasma lipid peroxides concentration but was only significant for group gamma1 (gamma1: 0.109+/-0.026, HC: 0.132+/-0.008; p = 0.034). On the other hand, lipid peroxides in blood vessels reduced significantly in all treated groups (gamma1; p<0.05, gamma2; p<0.001, gamma3; p<0.005). All the three treated groups showed improve total antioxidant status (p<0.001) significantly. SOD activity also showed significant improvement in all groups (gamma1: p<0.001, gamma2: p<0.05, gamma3: p<0.001). Correlation studies showed that, total antioxidant status (TAS) and SOD were significantly negatively correlated with blood pressure in normal rats (p = 0.007; p = 0.008) but not in SHR control. This correlation regained in all three groups SHR's after treatment with tocotrienol. Lipid peroxides in blood vessel and plasma showed a positive correlation with blood pressure in normal and SHR control. This correlation also remains in treated groups significantly except that in gamma3 where positive correlation with plasma lipid peroxide was not significant. In conclusion it was found that antioxidant supplement of gamma-tocotrienol may prevent development of increased blood pressure, reduce lipid peroxides in plasma and blood vessels and enhanced total antioxidant status including SOD activity.
    Matched MeSH terms: Rats, Inbred SHR; Rats, Inbred WKY; Rats
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links