Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
Beta-lactam antibiotics display time-dependant pharmacodynamics whereby constant antibiotic concentrations rather than high peak concentrations are most likely to result in effective treatment of infections caused by susceptible bacteria. Continuous administration has been suggested as an alternative strategy, to conventional intermittent dosing, to optimise beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) properties. With the availability of emerging data, we elected to systematically investigate the published literature describing the comparative PK/PD and clinical outcomes of beta-lactam antibiotics administered by continuous or intermittent infusion. We found that the studies have been performed in various patient populations including critically ill, cancer and cystic fibrosis patients. Available in vitro PK/PD data conclusively support the administration of beta-lactams via continuous infusion for maximizing bacterial killing from consistent attainment of pharmacodynamic end-points. In addition, clinical outcome data supports equivalence, even with the use of a lower dose by continuous infusion. However, the present clinical data is limited with small sample sizes common with insufficient power to detect advantages in favour of either dosing strategy. With abundant positive pre-clinical data as well as document in vivo PK/PD advantages, large multi-centre trials are needed to describe whether continuous administration of beta-lactams is truly more effective than intermittent dosing.
The leaf extract of a medicinally important plant, watercress (Nasturtium officinale), was obtained through an ultrasound-facilitated method and utilized for the preparation of ZnO nanoparticles via a joint ultrasound-microwave assisted procedure. The characteristics of the extract enriched nanoparticles (Ext/ZnO) were determined by SEM, TEM, XRD, EDX, BET, FTIR, TGA, and UV-Vis DRS analyses and compared to that of ZnO prepared in the absence of the extract (ZnO). The presence of carbon and carbonaceous bonds, changes in the morphology, size, band gap energy, and weight-decay percentage were a number of differences between ZnO and Ext/ZnO that confirmed the link of extract over nanoparticles. Ext/ZnO, watercress leaf extract, ZnO, and insulin therapies were administrated to treat alloxan-diabetic Wister rats and their healing effectiveness results were compared to one another. The serum levels of the main diabetic indices such as insulin, fasting blood glucose, and lipid profile (total triglyceride, total cholesterol, and high-density lipoprotein cholesterol) were estimated for healthy, diabetic, and the rats rehabilitated with the studied therapeutic agents. The watercress extract-enriched ZnO nanoparticles offered the best performance and suppressed the diabetic status of rats. Moreover, both ZnO samples satisfactory inhibited the activities of Staphylococcus aureus and Escherichia coli bacteria. Based on the results, the application of Nasturtium officinale leaf extract can strongly empower ZnO nanoparticles towards superior antidiabetic and enhanced antibacterial activities.
Increasing levels of antibiotic resistance in pathogens, including Staphylococcus aureus, remains a serious problem for public health, leading to the need for better alternative antimicrobial strategies. The antimicrobial proteins produced by Lactobacillus plantarum USM8613 attributed to its anti-staphylococcal activity were identified as extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase (GADPH), both with different mechanisms of action. Extracellular transglycosylase, which contains a LysM domain, exerts a cell wall-mediated killing mechanism, while GADPH penetrates into S. aureus cells and subsequently induces the overexpression of autolysis regulators, resulting in S. aureus autolysis. Both extracellular transglycosylase and GADPH exert anti-inflammatory effects in S. aureus-infected HaCaT cells by reducing the expression and production of TLR-2, hBDs and various pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-α, and IL-8). Taken together, extracellular transglycosylase and GADPH produced by L. plantarum USM8613 could potentially be applied as an alternative therapeutic agent to treat S. aureus skin infections and promote skin health.
In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1.
INTRODUCTION: Antibiotic resistance is a rapidly emerging problem. A major concern is methicillin-resistant Staphylococcus aureus (MRSA), especially in developing countries where cost-effectiveness is imperative. Restriction of vancomycin usage is necessary to reduce the emergence of vancomycin-resistant organisms. The aim of this study was to look into the appropriate use of vancomycin based on the Healthcare Infection Control Practices Advisory Committee (HICPAC) guidelines and to investigate serum levels of vancomycin.
METHODOLOGY: The study was performed retrospectively. Medical records of patients treated with vancomycin for the past year were identified and selected.
RESULTS: Overall, 118 patients were treated with vancomycin. Appropriate use of vancomycin was significantly higher than inappropriate use (p = 0.001). Approximately 85% (n = 100) of patients were given vancomycin for treatment, whereas the rest were given it for prophylaxis. Appropriate use of vancomycin was observed in 67% (n = 79) of patients. However, there was still a high rate of inappropriate vancomycin use for prophylaxis and treatment (n = 39, 33.1%). The most common reason for inappropriate use was non-neutropenic and non-line related sepsis (n = 36, 30.8%). Therapeutic drug monitoring of vancomycin was performed in 79 patients (67%). Most patients (n = 53, 67%) demonstrated sub-therapeutic levels during the first measurement. There was no significant difference between trough levels achieved with a higher (> 15 mg/kg) versus a lower dose (< 15 mg/kg).
CONCLUSIONS: This study demonstrates that there was still a high level of inappropriate vancomycin use, which could potentially contribute to vancomycin resistance.
Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity with MIC value of 15.6 to 31.3 μg/mL against 55 S. aureus isolates (43 MRSA and 12 MSSA isolates). The active compound also displayed MBC values between 250 and 500 μg/mL against 58 S. aureus isolates (45 MRSA and 13 MSSA isolates) implying that MFM 501 has a bacteriostatic rather than bactericidal effect against both MRSA and MSSA isolates. In addition, MFM 501 showed no apparent cytotoxicity activity towards three normal cell lines (WRL-68, Vero, and 3T3) with IC50 values of >625 µg/mL. Selectivity index (SI) of MFM 501 gave a value of >10 suggesting that MFM 501 is significant and suitable for further in vivo investigations. These results suggested that synthetically derived intermediate compounds based on natural products may play an important role in the discovery of new anti-infective agents against MRSA.
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
Increasing levels of antibiotic resistance by Staphylococcus aureus have posed a need to search for non-antibiotic alternatives. This study aimed to assess the inhibitory effects of crude and fractionated cell-free supernatants (CFS) of locally isolated lactic acid bacteria (LAB) against a clinical strain of S. aureus. A total of 42 LAB strains were isolated and identified from fresh vegetables, fresh fruits and fermented products prior to evaluation of inhibitory activities. CFS of LAB strains exhibiting a stronger inhibitive effect against S. aureus were fractionated into crude protein, polysaccharide and lipid fractions. Crude protein fractions showed greater inhibition against S. aureus compared to polysaccharide and lipid fractions, with a more prevalent effect from Lactobacillus plantarum 8513 and L. plantarum BT8513. Crude protein, polysaccharide and lipid fractions were also characterised with glycine, mannose and oleic acid being detected as the major component of each fraction, respectively. Scanning electron microscopy revealed roughed and wrinkled membrane morphology of S. aureus upon treatment with crude protein fractions of LAB, suggesting an inhibitory effect via the destruction of cellular membrane. This research illustrated the potential application of fractionated extracts from LAB to inhibit S. aureus for use in the food and health industry.
Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.
The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).
Palm kernel oil esters nanoemulsion-loaded with chloramphenicol was optimized using response surface methodology (RSM), a multivariate statistical technique. Effect of independent variables (oil amount, lecithin amount and glycerol amount) toward response variables (particle size, polydispersity index, zeta potential and osmolality) were studied using central composite design (CCD). RSM analysis showed that the experimental data could be fitted into a second-order polynomial model. Chloramphenicol-loaded nanoemulsion was formulated by using high pressure homogenizer. The optimized chloramphenicol-loaded nanoemulsion response values for particle size, PDI, zeta potential and osmolality were 95.33nm, 0.238, -36.91mV, and 200mOsm/kg, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM. The results showed that the optimized compositions have the potential to be used as a parenteral emulsion to cross blood-brain barrier (BBB) for meningitis treatment.
Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a-i) containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series.
Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
Melastoma malabathricum (MM) is a well-known plant in Malaysian traditional medicine, locally known as senduduk. Its ethanol and aqueous extracts have been used in the present investigation to study the immunomodulatory role on human peripheral blood mononuclear cell (PBMC), and the DPPH, ABTS and FRAP free radical scavenging activities were also measured. Total flavonoids and total phenolic contents were assayed and the antibacterial effect was tested against four species of bacteria; two Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) and two Gram-negative (Escherichia coli and Klebsilla pneumonia). The tests were carried out using the disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Moreover, the acute toxicity was evaluated in vivo on the ethanol extract of MM to establish its safety when administered orally. In our results, both extracts of MM showed abilities to scavenge DPPH and ABTS free radicals, IC(50) values: (11.599 ± 0.84, 10.573 ± 0.58 µmol/L) and (62.657 ± 0.78, 63.939 ± 0.48 µmol/L) for ethanol and aqueous extracts respectively. Indeed the ethanol extract evidenced high phenolic content (384.33 ± 0.005 mg/g), flavonoids contents (85.8 ± 0.009 mg/g) and ferric reducing antioxidant power (33,590 ± 0.038 mmol/g), with high activity against S. aureus and S. agalactiae (11 ± 0.3 and 12 ± 0.6 mm inhibition zones). Likewise, the percentage of peripheral blood mononuclear cells (PBMC) viability was increased in response to MM, IC(50) values (1.781 ± 1.2 and 6.545 ± 0.93 µg/mL) for ethanol and aqueous extracts, respectively. In addition, our results showed that the MM extract is safe even at a high dose of 5,000 mg/kg and has no oral toxicity. These findings suggest the excellent medicinal bioactivity of MM and explain the popularity of this plant in the folk medicine as a remedy for different illnesses.
The incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections in intensive care units in Malaysia is significant. Invasive MRSA infections are commonly treated with vancomycin. In clinical practice, the serum vancomycin trough concentration is used as a surrogate marker of vancomycin efficacy. A low concentration of vancomycin may result in less effective therapy and increase the risk of bacterial resistance. We evaluated the relationship between the resolution of MRSA infections and trough concentrations of vancomycin.
Campylobacter, Salmonella, and Listeria monocytogenes are important bacterial pathogens associated with gastroenteritis. The consumption of poultry meat and their products is considered as a major and leading source of human infection. While surveys of chicken meat and products, and its association with foodborne pathogens are widely available, such information on ducks is scarce. This survey examines the prevalence and antibiotic resistance of Campylobacter, Salmonella and L. monocytogenes isolated from ducks. Data obtained from key surveys are summarized. The observed prevalence of these pathogens and their resistance to various antibiotics varies from one study to the other. The mean prevalence (and range means from individual surveys) are duck 53.0% (0.0-83.3%), duck meat and parts 31.6% (12.5-45.8%), and duck rearing and processing environment 94.4% (92.0-96.7%) for Campylobacter spp. For Salmonella spp., the mean prevalence data are duck 19.9% (3.3-56.9%), duck meat and parts 28.4% (4.4-75.6%), duck egg, shell, and content 17.5% (0-4.17%), and duck rearing and processing environment 32.5% (10.5-82.6%). Studies on the prevalence and antibiotic resistance of L. monocytogenes in ducks are by far very rare compared to Campylobacter and Salmonella, although ducks have been noted to be a potential source for these foodborne pathogens. From our survey, ducks were more frequently contaminated with Campylobacter than Salmonella. Campylobacter and Salmonella spp. also exhibited varying resistance to multiple antibiotics.
Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/therapeutic use
Stenotrophomonas maltophilia is a recently identified nosocomial pathogen in Malaysia. Despite limited pathogenicity, its rate of isolation has increased in recent years. The aim of this study was to investigate the antibiotic susceptibility patterns, antibiotic resistance determinants, and the epidemiology of S. maltophilia at the largest tertiary care hospital in Malaysia.
Matched MeSH terms: Anti-Bacterial Agents/pharmacokinetics*; Anti-Bacterial Agents/therapeutic use