Displaying publications 901 - 920 of 1467 in total

Abstract:
Sort:
  1. Chemoh W, Sawangjaroen N, Nissapatorn V, Sermwittayawong N
    Vet J, 2016 Sep;215:118-22.
    PMID: 27325616 DOI: 10.1016/j.tvjl.2016.05.018
    One of the most important routes of transmission for Toxoplasma gondii infection is the ingestion of foods contaminated with cat feces containing sporulated oocysts. The diagnosis of T. gondii infection by fecal microscopy is complicated, as other similar coccidian oocysts are often present in the same fecal specimen. This study aimed to identify T. gondii oocysts in cat feces using a novel PCR technique. Feline fecal specimens (n = 254) were screened for coccidian oocysts by light microscopy using the Sheather's flotation method. PCR analysis performed on the same specimens targeted a 529 bp repeat element and internal transcribed spacer-1 (ITS-1) regions were used to confirm the presence of Toxoplasma oocysts. By light microscopy, 49/254 (19.3%) of specimens contained coccidian oocysts. PCR analysis demonstrated 2/254 (0.8%) and 17/254 (6.7%) positive results using Tox and ITS-1 primers, respectively. However, coccidian oocysts were not identified on microscopic examination of specimens that were PCR-positive by Tox primers. Coccidian oocysts were identified on microscopic examination of 6/17 (35.3%) of the PCR-positive fecal specimens using ITS-1 primers. The BLAST results of 16 ITS-1 sequences were identified as T. gondii (n = 12; 4.7%) and Hammondia hammondi (n = 4; 1.6%). There was slight agreement between the 529 bp and ITS-1 PCR results (κ = 0.148). This is the first report of the detection of Toxoplasma oocysts using PCR analysis on feline fecal specimens from Southern Thailand. The ITS-1 region has potential as an alternative marker to identify T. gondii oocysts in feline fecal specimens.
    Matched MeSH terms: Cat Diseases/parasitology; Coccidiosis/parasitology; Feces/parasitology
  2. Naing C, Whittaker MA
    Infect Dis Poverty, 2018 Feb 09;7(1):10.
    PMID: 29427995 DOI: 10.1186/s40249-018-0392-9
    BACKGROUND: Plasmodium vivax is the most geographically widespread species among human malaria parasites. Immunopathological studies have shown that platelets are an important component of the host innate immune response against malaria infections. The objectives of this study were to quantify thrombocytopaenia in P. vivax malaria patients and to determine the associated risks of severe thrombocytopaenia in patients with vivax malaria compared to patients with P. falciparum malaria.

    MAIN BODY: A systematic review and meta-analysis of the available literature on thrombocytopaenia in P. vivax malaria patients was undertaken. Relevant studies in health-related electronic databases were identified and reviewed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Fifty-eight observational studies (n = 29 664) were included in the current review. Severe thrombocytopaenia (

    Matched MeSH terms: Thrombocytopenia/parasitology*; Malaria, Falciparum/parasitology; Malaria, Vivax/parasitology
  3. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

    Matched MeSH terms: Macaca/parasitology*; Malaria/parasitology; Zoonoses/parasitology
  4. Kho S, Barber BE, Johar E, Andries B, Poespoprodjo JR, Kenangalem E, et al.
    Blood, 2018 Sep 20;132(12):1332-1344.
    PMID: 30026183 DOI: 10.1182/blood-2018-05-849307
    Platelets are understood to assist host innate immune responses against infection, although direct evidence of this function in any human disease, including malaria, is unknown. Here we characterized platelet-erythrocyte interactions by microscopy and flow cytometry in patients with malaria naturally infected with Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, or Plasmodium knowlesi Blood samples from 376 participants were collected from malaria-endemic areas of Papua, Indonesia, and Sabah, Malaysia. Platelets were observed binding directly with and killing intraerythrocytic parasites of each of the Plasmodium species studied, particularly mature stages, and was greatest in P vivax patients. Platelets preferentially bound to the infected more than to the uninfected erythrocytes in the bloodstream. Analysis of intraerythrocytic parasites indicated the frequent occurrence of platelet-associated parasite killing, characterized by the intraerythrocytic accumulation of platelet factor-4 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling of parasite nuclei (PF4+TUNEL+ parasites). These PF4+TUNEL+ parasites were not associated with measures of systemic platelet activation. Importantly, patient platelet counts, infected erythrocyte-platelet complexes, and platelet-associated parasite killing correlated inversely with patient parasite loads. These relationships, taken together with the frequency of platelet-associated parasite killing observed among the different patients and Plasmodium species, suggest that platelets may control the growth of between 5% and 60% of circulating parasites. Platelet-erythrocyte complexes made up a major proportion of the total platelet pool in patients with malaria and may therefore contribute considerably to malarial thrombocytopenia. Parasite killing was demonstrated to be platelet factor-4-mediated in P knowlesi culture. Collectively, our results indicate that platelets directly contribute to innate control of Plasmodium infection in human malaria.
    Matched MeSH terms: Blood Platelets/parasitology*; Erythrocytes/parasitology*; Malaria/parasitology
  5. Hu W, Yu XG, Wu S, Tan LP, Song MR, Abdulahi AY, et al.
    J Helminthol, 2016 Jul;90(4):392-7.
    PMID: 26123649 DOI: 10.1017/S0022149X15000413
    Ancylostoma ceylanicum is a common zoonotic nematode. Cats act as natural reservoirs of the hookworm and are involved in transmitting infection to humans, thus posing a potential risk to public health. The prevalence of feline A. ceylanicum in Guangzhou (South China) was surveyed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In total, 112 faecal samples were examined; 34.8% (39/112) and 43.8% (49/112) samples were positive with hookworms by microscopy and PCR method, respectively. Among them, 40.8% of samples harboured A. ceylanicum. Twelve positive A. ceylanicum samples were selected randomly and used for cox 1 sequence analysis. Sequencing results revealed that they had 97-99% similarity with A. ceylanicum cox 1 gene sequences deposited in GenBank. A phylogenetic tree showed that A. ceylanicum isolates were divided into two groups: one comprising four isolates from Guangzhou (South China), and the other comprising those from Malaysia, Cambodia and Guangzhou. In the latter group, all A. ceylanicum isolates from Guangzhou were clustered into a minor group again. The results indicate that the high prevalence of A. ceylanicum in stray cats in South China poses a potential risk of hookworm transmission from pet cats to humans, and that A. ceylanicum may be a species complex worldwide.
    Matched MeSH terms: Ancylostomiasis/parasitology; Cat Diseases/parasitology*; Feces/parasitology*
  6. Barber BE, William T, Grigg MJ, Piera K, Yeo TW, Anstey NM
    J Clin Microbiol, 2013 Apr;51(4):1118-23.
    PMID: 23345297 DOI: 10.1128/JCM.03285-12
    Plasmodium knowlesi can cause severe and fatal human malaria in Southeast Asia. Rapid diagnosis of all Plasmodium species is essential for initiation of effective treatment. Rapid diagnostic tests (RDTs) are sensitive for detection of uncomplicated and severe falciparum malaria but have not been systematically evaluated in knowlesi malaria. At a tertiary referral hospital in Sabah, Malaysia, we prospectively evaluated the sensitivity of two combination RDTs for the diagnosis of uncomplicated and severe malaria from all three potentially fatal Plasmodium species, using a pan-Plasmodium lactate dehydrogenase (pLDH)-P. falciparum histidine-rich protein 2 (PfHRP2) RDT (First Response) and a pan-Plasmodium aldolase-PfHRP2 RDT (ParaHIT). Among 293 hospitalized adults with PCR-confirmed Plasmodium monoinfection, the sensitivity of the pLDH component of the pLDH-PfHRP2 RDT was 74% (95/129; 95% confidence interval [CI], 65 to 80%), 91% (110/121; 95% CI, 84 to 95%), and 95% (41/43; 95% CI, 85 to 99%) for PCR-confirmed P. knowlesi, P. falciparum, and P. vivax infections, respectively, and 88% (30/34; 95% CI, 73 to 95%), 90% (38/42; 95% CI, 78 to 96%), and 100% (12/12; 95% CI, 76 to 100%) among patients tested before antimalarial treatment was begun. Sensitivity in severe malaria was 95% (36/38; 95% CI, 83 to 99), 100% (13/13; 95% CI, 77 to 100), and 100% (7/7; 95% CI, 65 to 100%), respectively. The aldolase component of the aldolase-PfHRP2 RDT performed poorly in all Plasmodium species. The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the pLDH- nor aldolase-based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi. More sensitive RDTs are needed in regions of P. knowlesi endemicity.
    Matched MeSH terms: Malaria/parasitology; Parasitology/methods
  7. Ngui R, Ravindran S, Ong DB, Chow TK, Low KP, Nureena ZS, et al.
    J Clin Microbiol, 2014 Sep;52(9):3468-70.
    PMID: 24989613 DOI: 10.1128/JCM.01191-14
    We report a rare and unusual case of invasive Enterobius vermicularis infection in a fallopian tube. The patient was a 23-year-old Malaysian woman who presented with suprapubic pain and vaginal bleeding. A clinical diagnosis of ruptured right ovarian ectopic pregnancy was made. She underwent a laparotomy with a right salpingo-oophorectomy. Histopathological examination of the right fallopian tube showed eggs and adult remnants of E. vermicularis, and the results were confirmed using PCR and DNA sequencing.
    Matched MeSH terms: Fallopian Tubes/parasitology; Salpingitis/parasitology; Pregnancy Complications, Parasitic/parasitology
  8. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R
    Am J Trop Med Hyg, 2016 Feb;94(2):336-339.
    PMID: 26598573 DOI: 10.4269/ajtmh.15-0569
    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.
    Matched MeSH terms: Malaria/parasitology*
  9. Ivanova K, Zehtindjiev P, Mariaux J, Georgiev BB
    Infect Genet Evol, 2015 Apr;31:33-9.
    PMID: 25577987 DOI: 10.1016/j.meegid.2015.01.004
    The knowledge of the diversity of haemosporidian parasites is of primary importance as their representatives include agents of bird malaria. We investigated the occurrence of Haemoproteus spp. and Plasmodium spp. in bird populations from a single locality in the State of Selangor, Peninsular Malaysia, and report on the parasite prevalence of the two genera. A combination of methods (molecular and morphological) was used for detecting these parasites. Seventy-nine bird individuals were caught using mist-nets in July and August 2010 at Gombak Field Station of the University of Malaya, Kuala Lumpur. In total, 23 birds were identified as positive for Haemoproteus or Plasmodium infection and one individual was recognized as carrying mixed infection. The total prevalence of haemosporidians in the collected samples was 30.3%. Infections with parasites of the genus Haemoproteus were predominant compared to those of the genus Plasmodium. In total, 10 new cyt b lineages of Haemoproteus spp. and 3 new cyt b lineages of Plasmodium spp. were recorded in this study. From all recorded haemosporidian lineages (16 in total), 3 were known from previous studies - hCOLL2, hYWT2 and pNILSUN1. Two of them are linked with their corresponding morphospecies - Haemoproteus pallidus (COLL2) and Haemoproteus motacillae (YWT2). The morphological analysis in the present study confirmed the results obtained by the PCR method relative to prevalence, with 25.3% total prevalence of Haemoproteus and Plasmodium parasites. The intensities of infection varied between 0.01% and 19%. Most infections were light, with intensities below 0.1%. The present study is the first molecular survey of the protozoan blood parasites of the order Haemosporida recorded in Malaysia.
    Matched MeSH terms: Birds/parasitology*
  10. Syed-Hussain SS, Howe L, Pomroy WE, West DM, Hardcastle M, Williamson NB
    Vet Parasitol, 2015 Mar 15;208(3-4):150-8.
    PMID: 25638717 DOI: 10.1016/j.vetpar.2014.12.036
    Recent reports indicate N. caninum has a possible role in causing abortions in sheep in New Zealand. Knowledge about the mode of transmission of neosporosis in sheep in New Zealand is limited. This study aimed to determine the rate of vertical transmission that would occur in lambs born from experimentally inoculated ewes and to determine if previous inoculation would protect the lambs from N. caninum infection. A group of 50 ewes was divided into 2 groups with one group being inoculated with 5×10(6) N. caninum tachyzoites prior to pregnancy in Year 1. In Year 2, each of these groups was subdivided into 2 groups with one from each original group being inoculated with 1×10(7) N. caninum tachyzoites on Day 120 of gestation. Inoculation of N. caninum tachyzoites into ewes prior to mating resulted in no congenital transmission in lambs born in Year 1 but without further inoculation, 7 out of 11 lambs in Year 2 were positive for N. caninum infection. Ewes that were inoculated in both years resulted in all 12 lambs born in Year 2 being positive for N. caninum infection. This indicates that previous inoculation in Year 1 did not result in any vertical transmission in that year but did not provide any protection against vertical transmission in Year 2. These results suggest that vertical transmission occurs readily once the ewe is infected.
    Matched MeSH terms: Sheep Diseases/parasitology*
  11. Grigg MJ, William T, Dhanaraj P, Menon J, Barber BE, von Seidlein L, et al.
    BMJ Open, 2014 Aug 19;4(8):e006005.
    PMID: 25138814 DOI: 10.1136/bmjopen-2014-006005
    INTRODUCTION: Malaria due to Plasmodium knowlesi is reported throughout South-East Asia, and is the commonest cause of it in Malaysia. P. knowlesi replicates every 24 h and can cause severe disease and death. Current 2010 WHO Malaria Treatment Guidelines have no recommendations for the optimal treatment of non-severe knowlesi malaria. Artemisinin-combination therapies (ACT) and chloroquine have each been successfully used to treat knowlesi malaria; however, the rapidity of parasite clearance has not been prospectively compared. Malaysia's national policy for malaria pre-elimination involves mandatory hospital admission for confirmed malaria cases with discharge only after two negative blood films; use of a more rapidly acting antimalarial agent would have health cost benefits. P. knowlesi is commonly microscopically misreported as P. malariae, P. falciparum or P. vivax, with a high proportion of the latter two species being chloroquine-resistant in Malaysia. A unified ACT-treatment protocol would provide effective blood stage malaria treatment for all Plasmodium species.

    METHODS AND ANALYSIS: ACT KNOW, the first randomised controlled trial ever performed in knowlesi malaria, is a two-arm open-label trial with enrolments over a 2-year period at three district sites in Sabah, powered to show a difference in proportion of patients negative for malaria by microscopy at 24 h between treatment arms (clinicaltrials.gov #NCT01708876). Enrolments started in December 2012, with completion expected by September 2014. A total sample size of 228 is required to give 90% power (α 0.05) to determine the primary end point using intention-to-treat analysis. Secondary end points include parasite clearance time, rates of recurrent infection/treatment failure to day 42, gametocyte carriage throughout follow-up and rates of anaemia at day 28, as determined by survival analysis.

    ETHICS AND DISSEMINATION: This study has been approved by relevant institutional ethics committees in Malaysia and Australia. Results will be disseminated to inform knowlesi malaria treatment policy in this region through peer-reviewed publications and academic presentations.

    TRIAL REGISTRATION NUMBER: NCT01708876.

    Matched MeSH terms: Malaria/parasitology
  12. Song BK, Pan MZ, Lau YL, Wan KL
    Genet. Mol. Res., 2014;13(3):5803-14.
    PMID: 25117339 DOI: 10.4238/2014.July.29.8
    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.
    Matched MeSH terms: Coccidiosis/parasitology
  13. Kermani N, Abu Hassan ZA, Suhaimi A, Abuzid I, Ismail NF, Attia M, et al.
    PLoS One, 2014;9(6):e100671.
    PMID: 24968125 DOI: 10.1371/journal.pone.0100671
    The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.
    Matched MeSH terms: Lepidoptera/parasitology*
  14. Al-Delaimy AK, Al-Mekhlafi HM, Nasr NA, Sady H, Atroosh WM, Nashiry M, et al.
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3074.
    PMID: 25144662 DOI: 10.1371/journal.pntd.0003074
    This cross-sectional study aimed to investigate the current prevalence and risk factors associated with intestinal polyparasitism (the concurrent infection with multiple intestinal parasite species) among Orang Asli school children in the Lipis district of Pahang state, Malaysia.
    Matched MeSH terms: Feces/parasitology
  15. Grigg MJ, William T, Drakeley CJ, Jelip J, von Seidlein L, Barber BE, et al.
    BMJ Open, 2014 Aug 22;4(8):e006004.
    PMID: 25149186 DOI: 10.1136/bmjopen-2014-006004
    INTRODUCTION: Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission.

    METHODS AND ANALYSIS: A population-based case-control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models.

    ETHICS: This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK.

    Matched MeSH terms: Malaria/parasitology
  16. Ahmed AM, Pinheiro MM, Divis PC, Siner A, Zainudin R, Wong IT, et al.
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3086.
    PMID: 25121807 DOI: 10.1371/journal.pntd.0003086
    Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = ≥ 0.34, p =  <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region.
    Matched MeSH terms: Parasitemia/parasitology
  17. Borkhanuddin MH, Cech G, Molnár K, Németh S, Székely C
    Syst Parasitol, 2014 Jul;88(3):245-59.
    PMID: 24935127 DOI: 10.1007/s11230-014-9496-1
    Molecular and morphometric investigations were conducted on the actinosporean morphotypes of myxosporeans surveyed in oligochaetes of Lake Balaton and Kis-Balaton Water reservoir. Oligochaetes belonging to the species Isochaetides michaelseni Lastočkin and Branchiura sowerbyi Beddard as well as to the genera Nais Dujardin, Dero Müller and Aeolosoma Ehrenberg were studied during an 18-month period. Actinosporeans were obtained exclusively from I. michaelseni (7,818 specimens) with very low prevalence (0.01-0.06%). Four new actinosporean morphotypes of the collective groups raabeia (2 types), synactinomyxon (1 type) and neoactinomyxum (1 type) were found and described, including the first synactinomyxon collective group from Hungarian biotopes and a new raabeia morphotype. Except for Synactinomyxon type 1, the 18S rDNA analysis revealed that the spores did not match any myxospore entity found in the GenBank.
    Matched MeSH terms: Oligochaeta/parasitology*
  18. Sulaiman H, Ismail MD, Jalalonmuhali M, Atiya N, Ponnampalavanar S
    Malar J, 2014;13:341.
    PMID: 25176417 DOI: 10.1186/1475-2875-13-341
    This case report describes a case of presumed acute myocardial infarction in a returned traveler who was later diagnosed to have severe malaria. Emergency coronary angiography was normal and subsequent peripheral blood film was positive for Plasmodium falciparum.
    Matched MeSH terms: Blood/parasitology
  19. Chuah C, Jones MK, Burke ML, McManus DP, Owen HC, Gobert GN
    Cell. Microbiol., 2014 Nov;16(11):1666-77.
    PMID: 24898449 DOI: 10.1111/cmi.12316
    Neutrophils contribute to the pathological processes of a number of inflammatory disorders, including rheumatoid arthritis, sepsis and cystic fibrosis. Neutrophils also play prominent roles in schistosomiasis japonica liver fibrosis, being central mediators of inflammation following granuloma formation. In this study, we investigated the interaction between Schistosoma japonicum eggs and neutrophils, and the effect of eggs on the inflammatory phenotype of neutrophils. Our results showed significant upregulated expression of pro-inflammatory cytokines (IL-1α, IL-1β and IL-8) and chemokines (CCL3, CCL4 and CXCL2) in neutrophils after 4 h in vitro stimulation with S. japonicum eggs. Furthermore, mitochondrial DNA was released by stimulated neutrophils, and induced the production of matrix metalloproteinase 9 (MMP-9), a protease involved in inflammation and associated tissue destruction. We also found that intact live eggs and isolated soluble egg antigen (SEA) triggered the release of neutrophil extracellular traps (NETs), but, unlike those reported in bacterial or fungal infection, NETs did not kill schistosome eggs in vitro. Together these show that S. japonicum eggs can induce the inflammatory phenotype of neutrophils, and further our understanding of the host-parasite interplay that takes place within the in vivo microenvironment of schistosome-induced granuloma. These findings represent novel findings in a metazoan parasite, and confirm characteristics of NETs that have until now, only been observed in response to protozoan pathogens.
    Matched MeSH terms: Neutrophils/parasitology*
  20. Ngui R, Shafie A, Chua KH, Mistam MS, Al-Mekhlafi HM, Sulaiman WW, et al.
    Geospat Health, 2014 May;8(2):365-76.
    PMID: 24893014
    Soil-transmitted helminth (STH) infections in Malaysia are still highly prevalent, especially in rural and remote communities. Complete estimations of the total disease burden in the country has not been performed, since available data are not easily accessible in the public domain. The current study utilised geographical information system (GIS) to collate and map the distribution of STH infections from available empirical survey data in Peninsular Malaysia, highlighting areas where information is lacking. The assembled database, comprising surveys conducted between 1970 and 2012 in 99 different locations, represents one of the most comprehensive compilations of STH infections in the country. It was found that the geographical distribution of STH varies considerably with no clear pattern across the surveyed locations. Our attempt to generate predictive risk maps of STH infections on the basis of ecological limits such as climate and other environmental factors shows that the prevalence of Ascaris lumbricoides is low along the western coast and the southern part of the country, whilst the prevalence is high in the central plains and in the North. In the present study, we demonstrate that GIS can play an important role in providing data for the implementation of sustainable and effective STH control programmes to policy-makers and authorities in charge.
    Matched MeSH terms: Soil/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links