Displaying publications 81 - 100 of 247 in total

Abstract:
Sort:
  1. Haruna A, Mohamed Z, Efe MÖ, Abdullahi AM
    ISA Trans, 2023 Oct;141:470-481.
    PMID: 37507325 DOI: 10.1016/j.isatra.2023.07.002
    In this paper, the energy efficiency of the widespread application of backstepping control to a class of nonlinear motion systems is investigated. A Switched Step Integral Backstepping Control (SSIBC) scheme is introduced to improve immunity to measurement noise and to increase the energy efficiency of conventional backstepping in practice. The SSIBC is realized by switching between two candidate controllers obtained at different steps of the iterative backstepping design process. A bi-state dependent hysteresis rule is developed to supervise stable switching between the different regimes in the presence of noise. The proposed method is experimentally verified on a MIMO twin rotor laboratory helicopter involving coupled nonlinear dynamics, inaccessible states and uncertainties. Experimental results show that in addition to a reduction in power consumption, the SSIBC reduces saturation of the control signal and visible motor jerking in contrast with conventional backstepping. Additional comparisons with a previously proposed optimized decoupling PID controller also show significant improvement in precision achieved with higher energy efficiency. Experimental results obtained with the introduction of an external disturbance into the system also show the robustness of the proposed SSIBC.
  2. Hashim S, Ayub ZN, Mohamed Z, Hasan H, Harun A, Ismail N, et al.
    J Travel Med, 2016 Feb;23(2):tav019.
    PMID: 26858268 DOI: 10.1093/jtm/tav019
    BACKGROUND: Respiratory illness continues to exert a burden on hajj pilgrims in Makkah. The purpose of this study is to determine the prevalence of respiratory illness and its associated factors among Malaysian hajj pilgrims in 2013 and to describe its preventive measures.

    METHODS: A cross-sectional study was conducted in Makkah and Malaysia during the 2013 hajj season. A self-administered proforma on social demographics, previous experience of hajj or umrah, smoking habits, co-morbid illness and practices of preventive measures against respiratory illness were obtained.

    RESULTS: A total of 468 proforma were analysed. The prevalence of the respiratory illness was 93.4% with a subset of 78.2% fulfilled the criteria for influenza-like illness (ILI). Most of them (77.8%) had a respiratory illness of <2 weeks duration. Approximately 61.8% were administered antibiotics but only 2.1% of them had been hospitalized. Most of them acquired the infection after a brief stay at Arafat (81.2%). Vaccination coverages for influenza virus and pneumococcal disease were quite high, 65.2% and 59.4%, respectively. For other preventive measures practices, only 31.8% of them practiced good hand hygiene, ∼82.9% of pilgrims used surgical face masks, N95 face masks, dry towels, wet towels or veils as their face masks. Nearly one-half of the respondents (44.4%) took vitamins as their food supplement. Malaysian hajj pilgrims with previous experience of hajj (OR 0.24; 95% CI 0.10-0.56) or umrah (OR 0.19; 95% CI 0.07-0.52) and those who have practiced good hand hygiene (OR 0.35; 95% CI 0.16-0.79) were found to be significantly associated with lower risk of having respiratory illness. Otherwise, pilgrims who had contact with those with respiratory illness (OR 2.61; 95% CI 1.12-6.09) was associated with higher risk.

    CONCLUSIONS: The prevalence of respiratory illness remains high among Malaysian hajj pilgrims despite having some practices of preventive measures. All preventive measures which include hand hygiene, wearing face masks and influenza vaccination must be practiced together as bundle of care to reduce respiratory illness effectively.

  3. Hemmati F, Ghasemi R, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, et al.
    Mol Neurobiol, 2014 Dec;50(3):797-810.
    PMID: 24464263 DOI: 10.1007/s12035-013-8631-3
    Neuroinflammation is known as a key player in a variety of neurodegenerative and/or neurological diseases. Brain Toll-like receptors (TLRs) are leading elements in the initiation and progression of neuroinflammation and the development of different neuronal diseases. Furthermore, TLR activation is one of the most important elements in the induction of insulin resistance in different organs such as the central nervous system. Involvement of insulin signaling dysregulation and insulin resistance are also shown to contribute to the pathology of neurological diseases. Considering the important roles of TLRs in neuroinflammation and central insulin resistance and the effects of these processes in the initiation and progression of neurodegenerative and neurological diseases, here we are going to review current knowledge about the potential crosstalk between TLRs and insulin signaling pathways in neuroinflammatory disorders of the central nervous system.
  4. Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al.
    Behav Brain Res, 2013 Sep 1;252:415-21.
    PMID: 23777795 DOI: 10.1016/j.bbr.2013.06.016
    Alzheimer's disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
  5. Heo CC, Kurahashi H, Nishida K, Tan Siew H, Mohamed Z, Mohamed AM, et al.
    Trop Biomed, 2008 Dec;25(3):254-6.
    PMID: 19287366
    Fannia prisca Stein, 1918 is newly recorded from peninsular Malaysia. This record is based on 4 male specimens from Mount Berembun, Brinchang, Cameron Highland, Pahang state, peninsular Malaysia. It is previously recorded from China, Mongolia, Korea, Japan, Taiwan, Bonin Island, Thailand and oriental region. The male of Fannia prisca can be differentiated from male Fannia scalaris by the following features: for F. prisca, mid-coxa without spine; mid-tibia normal or without stout triangular ventral projection; and hind tibia usually with 2 av, while F. scalaris has several stout hook-like spines on the anterior margin; mid-tibia with stout triangular ventral projection and hind tibia usually with 3 av. Both F. prisca and F. scalaris can be differentiated from Fannia leucosticta by looking at its hind tibia, which only has 1 av.
  6. Immaculate Mbongo L, Yamunah Devi A, Zain S, Omar SZ, Mohamed Z
    Pharmacology, 2015;96(1-2):44-8.
    PMID: 26065725 DOI: 10.1159/000430857
    Preterm birth (PTB) is the largest cause of neonatal mortality and morbidity in the world. Ethnicity disparity in the occurrence of PTB has been associated with the cytokine function. In this study, we aimed at examining cytokine levels in women with spontaneous preterm and term births.
  7. Islam M, Mohamed EH, Esa E, Kamaluddin NR, Zain SM, Yusoff YM, et al.
    Br. J. Cancer, 2017 Nov 07;117(10):1551-1556.
    PMID: 28898234 DOI: 10.1038/bjc.2017.316
    BACKGROUND: Although aberrant expression of cytokines and small molecules (analytes) is well documented in acute myeloid leukaemia (AML), their co-expression patterns are not yet identified. In addition, plasma baselines for some analytes that are biomarkers for other cancers have not been previously reported in AML.

    METHODS: We used multiplex array technology to simultaneously detect and quantify 32 plasma analyte (22 reported analytes and 10 novel analytes) levels in 38 patients.

    RESULTS: In our study, 16 analytes are found to be significantly deregulated (13 higher, 3 lower, Mann-Whitney U-test, P-value <0.005), where 5 of them have never been reported before in AML. We predicted a seven-analyte-containing multiplex panel for diagnosis of AML and, among them, MIF could be a possible therapeutic target. In addition, we observed that circulating analytes show five co-expression signatures.

    CONCLUSIONS: Circulating analyte expression in AML significantly differs from normal, and follow distinct expression patterns.

  8. Islam M, Mohamed Z, Assenov Y
    Int J Genomics, 2017;2017:2913648.
    PMID: 28713819 DOI: 10.1155/2017/2913648
    Acute myeloid leukemia (AML) is a haematological malignancy characterized by the excessive proliferation of immature myeloid cells coupled with impaired differentiation. Many AML cases have been reported without any known cytogenetic abnormalities and carry no mutation in known AML-associated driver genes. In this study, 200 AML cases were selected from a publicly available cohort and differentially analyzed for genetic, epigenetic, and cytogenetic abnormalities. Three genes (FLT3, DNMT3A, and NPMc) are found to be predominantly mutated. We identified several aberrations to be associated with genome-wide methylation changes. These include Del (5q), T (15; 17), and NPMc mutations. Four aberrations-Del (5q), T (15; 17), T (9; 22), and T (9; 11)-are significantly associated with patient survival. Del (5q)-positive patients have an average survival of less than 1 year, whereas T (15; 17)-positive patients have a significantly better prognosis. Combining the methylation and mutation data reveals three distinct patient groups and four clusters of genes. We speculate that combined signatures have the better potential to be used for subclassification of AML, complementing cytogenetic signatures. A larger sample cohort and further investigation of the effects observed in this study are required to enable the clinical application of our patient classification aided by DNA methylation.
  9. Islam MM, Mohamed Z
    Biomed Res Int, 2015;2015:731292.
    PMID: 26579539 DOI: 10.1155/2015/731292
    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.
  10. Islam MM, Aktaruzzaman M, Mohamed Z
    Bioinformation, 2015;11(2):67-72.
    PMID: 25848166 DOI: 10.6026/97320630011067
    Normal blood glucose level depends on the availability of insulin and its ability to bind insulin receptor (IR) that regulates the downstream signaling pathway. Insulin sequence and blood glucose level usually vary among animals due to species specificity. The study of genetic variation of insulin, blood glucose level and diabetics symptoms development in Aves is interesting because of its optimal high blood glucose level than mammals. Therefore, it is of interest to study its evolutionary relationship with other mammals using sequence data. Hence, we compiled 32 Aves insulin from GenBank to compare its sequence-structure features with phylogeny for evolutionary inference. The analysis shows long conserved motifs (about 14 residues) for functional inference. These sequences show high leucine content (20%) with high instability index (>40). Amino acid position 11, 14, 16 and 20 are variable that may have contribution to binding to IR. We identified functionally critical variable residues in the dataset for possible genetic implication. Structural models of these sequences were developed for surface analysis towards functional representation. These data find application in the understanding of insulin function across species.
  11. Jamalpour S, Zain SM, Mosavat M, Mohamed Z, Omar SZ
    Gene, 2018 Apr 15;650:34-40.
    PMID: 29410004 DOI: 10.1016/j.gene.2018.01.091
    BACKGROUND: Although the influence of a common variant in the glucokinase regulatory gene (GCKR rs780094) in type 2 diabetes mellitus has been well documented, less data however, is available of its role in gestational diabetes mellitus (GDM). We carried out a case control study to assess the association between GCKR rs780094 and GDM in the Asian, and also a meta-analysis to further assess the strength of the association.

    METHODS: Demographic, clinical and genotype data were determined for 1122 women (267 cases and 855 controls) recruited from the University of Malaya Medical Centre in the Klang Valley, Kuala Lumpur. Relevant articles were identified from Pubmed, Embase, MEDLINE, and Web of Science. Extraction of data was carried out and summary estimates of the association between rs780094 and GDM were examined.

    RESULTS: The frequency of risk allele C was significantly higher in the cases than controls (OR 1.34, 95% CI 1.09-1.66, P = 0.006). The C allele was also associated with increased level of random 2-hour fasting plasma glucose and pregravid body mass index. Meta-analysis further confirmed the association of the GCKR rs780094 with GDM (OR 1.32, 95% CI 1.14-1.52, P = 0.0001).

    CONCLUSION: This study strongly suggests that GCKR rs780094-C is associated with increased risk of GDM.

  12. Jamalpour S, Zain SM, Vazifehmand R, Mohamed Z, Pung YF, Kamyab H, et al.
    Sci Rep, 2022 Nov 24;12(1):20295.
    PMID: 36434110 DOI: 10.1038/s41598-022-23816-3
    Gestational diabetes mellitus (GDM) is a severe global issue that requires immediate attention. MicroRNA expression abnormalities are possibly disease-specific and may contribute to GDM pathological processes. To date, there is limited data on miRNA profiling in GDM, especially that involves a longitudinal study. Here, we performed miRNA expression profiling in the entire duration of pregnancy (during pregnancy until parturition and postpartum) using a miRNA- polymerase chain reaction array (miRNA-PCRArray) and in-silico analysis to identify unique miRNAs expression and their anticipated target genes in Malay maternal serum. MiRNA expression levels and their unique potential as biomarkers were explored in this work. In GDM patients, the expression levels of hsa-miR-193a, hsa-miR-21, hsa-miR-23a, and hsa-miR-361 were significantly increased, but miR-130a was significantly downregulated. The area under the curve (AUC) and receiver operating characteristic (ROC) curve study demonstrated that hsa-miR-193a (AUC = 0.89060 ± 04,470, P = 0.0001), hsa-miR-21 (AUC = 0.89500 ± 04,411, P = 0.0001), and miR-130a (AUC = 0.6939 ± 0.05845, P = 0.0025) had potential biomarker features in GDM. In-silico analysis also revealed that KLF (Kruppel-Like family of transcription factor), ZNF25 (Zinc finger protein 25), AFF4 (ALF transcription elongation factor 4), C1orf143 (long intergenic non-protein coding RNA 2869), SRSF2 (serine and arginine rich splicing factor 2), and ZNF655 (Zinc finger protein 655) were prominent genes targeted by the common nodes of miR23a, miR130, miR193a, miR21, and miR361.Our findings suggest that circulating microRNAs in the first trimester has the potential for GDM screening in the Malay population.
  13. Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, et al.
    Front Mol Biosci, 2020;7:624494.
    PMID: 33521059 DOI: 10.3389/fmolb.2020.624494
    Cancer is a multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. Natural compounds are target-specific and pose a limited cytotoxicity; therefore, can aid in the development of new therapeutic interventions for the treatment of this versatile disease. Berberine is a member of the protoberberine alkaloids family, mainly present in the root, stem, and bark of various trees, and has a reputed anticancer activity. Nonetheless, the limited bioavailability and low absorption rate are the two major hindrances following berberine administration as only 0.5% of ingested berberine absorbed in small intestine while this percentage is further decreased to 0.35%, when enter in systemic circulation. Nano-based formulation is believed to be an ideal candidate to increase absorption percentage as at nano scale level, compounds can absorb rapidly in gut. Nanotechnology-based therapeutic approaches have been implemented to overcome such problems, ultimately promoting a higher efficacy in the treatment of a plethora of diseases. This review present and critically discusses the anti-proliferative role of berberine and the nanotechnology-based therapeutic strategies used for the nano-scale delivery of berberine. Finally, the current approaches and promising perspectives of latest delivery of this alkaloid are also critically analyzed and discussed.
  14. Khang TF, Mohd Puaad NAD, Teh SH, Mohamed Z
    J Forensic Sci, 2021 May;66(3):960-970.
    PMID: 33438785 DOI: 10.1111/1556-4029.14655
    Wing shape variation has been shown to be useful for delineating forensically important fly species in two Diptera families: Calliphoridae and Sarcophagidae. Compared to DNA-based identification, the cost of geometric morphometric data acquisition and analysis is relatively much lower because the tools required are basic, and stable softwares are available. However, to date, an explicit demonstration of using wing geometric morphometric data for species identity prediction in these two families remains lacking. Here, geometric morphometric data from 19 homologous landmarks on the left wing of males from seven species of Calliphoridae (n = 55), and eight species of Sarcophagidae (n = 40) were obtained and processed using Generalized Procrustes Analysis. Allometric effect was removed by regressing centroid size (in log10 ) against the Procrustes coordinates. Subsequently, principal component analysis of the allometry-adjusted Procrustes variables was done, with the first 15 principal components used to train a random forests model for species prediction. Using a real test sample consisting of 33 male fly specimens collected around a human corpse at a crime scene, the estimated percentage of concordance between species identities predicted using the random forests model and those inferred using DNA-based identification was about 80.6% (approximate 95% confidence interval = [68.9%, 92.2%]). In contrast, baseline concordance using naive majority class prediction was 36.4%. The results provide proof of concept that geometric morphometric data has good potential to complement morphological and DNA-based identification of blow flies and flesh flies in forensic work.
  15. Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RE, Mohamed Z
    Molecules, 2011 Aug 29;16(9):7344-56.
    PMID: 21876481 DOI: 10.3390/molecules16097344
    The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.
  16. Kong WM, Chik Z, Mohamed Z, Alshawsh MA
    PMID: 29076424 DOI: 10.2174/1386207320666171026121820
    AIM AND OBJECTIVE: Mitragynine, a major active alkaloid of Mitragyna speciosa, acts as an agonist on µ-opioid receptors, producing effects similar to morphine and other opioids. It has been traditionally utilized to alleviate opiate withdrawal symptoms. Besides consideration about potency and selectivity, a good drug must possess a suitable pharmacokinetic profile, with suitable absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) profile, in order to have a high chance of success in clinical trials.

    MATERIAL AND METHOD: The purity of mitragynine in a Mitragyna speciosa alkaloid extract (MSAE) was determined using Ultra-Fast Liquid Chromatography (UFLC). In vitro high throughput ADMETox studies such as aqueous solubility, plasma protein binding, metabolic stability, permeability and cytotoxicity tests were carried out to analyze the physicochemical properties of MSAE and mitragynine. The UFLC quantification revealed that the purity of mitragynine in the MSAE was 40.9%.

    RESULTS: MSAE and mitragynine are highly soluble in aqueous solution at pH 4.0 but less soluble at pH 7.4. A parallel artificial membrane permeability assay demonstrated that it is extensively absorbed through the semi-permeable membrane at pH 7.4 but very poorly at pH 4.0. Both are relatively highly bound to plasma proteins (> 85 % bound) and are metabolically stable to liver microsomes (> 84 % remained unchanged). In comparison to MSAE, mitragynine showed higher cytotoxicity against WRL 68, HepG2 and Clone 9 hepatocytes after 72 h treatment.

    CONCLUSION: The obtained ADME and cytotoxicity data demonstrated that both MSAE and mitragynine have poor bioavailability and have the potential to be significantly cytotoxic.

  17. Kong WM, Mohamed Z, Alshawsh MA, Chik Z
    J Pharm Biomed Anal, 2017 Sep 05;143:43-47.
    PMID: 28551311 DOI: 10.1016/j.jpba.2017.05.020
    A microdialysis system coupled with a sensitive ultra-fast liquid chromatography-mass spectrometry (UFLC-MS) method was developed for the pharmacokinetic analysis of mitragynine in rat blood and striatum. Mitragynine is an active alkaloid of Mitragyna speciosa and has been proposed to be used for opioid withdrawal therapy. In this study, chromatographic separation was performed in a gradient elution mode with 0.1% formic acid and acetonitrile on a Zorbax Eclipse C18 column. The mass spectrometric (MS) analysis was carried out in a positive electrospray mode and mitragynine ion (m/z 399.2) was monitored in extracted ion chromatography. A good linearity range was obtained from 10-1000ng/mL with acceptable accuracy and precision parameters. The microdialysate was collected simultaneously from the striatum and the right jugular vein using microdialysis probes. After a single intravenous administration of 10mg/kg mitragynine, mitragynine showed a two-compartmental drug elimination pattern with half-life (T1/2) of approximately 13h. The percent of AUCbrain/AUCplasma of mitragynine was calculated and shown to be 65.8±4.5%. The results indicated that mitragynine could be a suitable molecule to develop into an opioid replacement drug based on its ideal pharmacokinetic properties, namely, small molecular size, lipophilic in nature and with excellent blood-brain barrier (BBB) permeability.
  18. Koosha S, Mohamed Z, Sinniah A, Alshawsh MA
    Molecules, 2019 Jul 10;24(14).
    PMID: 31295840 DOI: 10.3390/molecules24142522
    Colon cancer is the third most common type of cancer in the world. Diosmetin (Dis), a natural O-methylated flavone, has been reported to have anti-cancer effects against different types of cancer. Although the mechanisms of action of Dis against several cancer cell lines are well reported, in vivo anti-tumorigenesis properties of this compound are still obscure. Therefore, this study aimed to investigate the anti-tumorigenesis properties of Dis against HCT-116 colon cancer xenografts in nude mice. HCT-116 colon cancer cells were injected in NCr nu/nu nude mice and treatment with Dis was initiated after the tumor volumes reached 100 mm3 and continued for four weeks. On the sacrificing date nude mice treated with 100 mg/kg of Dis showed significant lower tumor volume (264 ± 238.3 mm3) as compared to the untreated group (1428.8 ± 459.6 mm3). Anti-apoptotic Bcl-2 protein was significantly downregulated, while apoptotic protein (Bax) was significantly overexpressed in nude mice treated with 100 mg/kg Dis as compared to untreated mice. In conclusion, our in vivo results indicate that Dis significantly reduces tumor growth rate of HCT-116 colon cancer cells in nude mice at a dose of 100 mg/kg, and has no toxic effects in ICR mice up to 2000 mg/kg.
  19. Koosha S, Mohamed Z, Sinniah A, Alshawsh MA
    Sci Rep, 2019 03 26;9(1):5148.
    PMID: 30914796 DOI: 10.1038/s41598-019-41685-1
    Diosmetin (Dis) is a bioflavonoid with cytotoxicity properties against variety of cancer cells including hepatocarcinoma, breast and colorectal (CRC) cancer. The exact mechanism by which Dis acts against CRC however, still remains unclear, hence in this study, we investigated the possible molecular mechanisms of Dis in CRC cell line, HCT-116. Here, we monitored the viability of HCT-116 cells in the presence of Dis and investigated the underlying mechanism of Dis against HCT-116 cells at the gene and protein levels using NanoString and proteome profiler array technologies. Findings demonstrated that Dis exhibits greater cytotoxic effects towards HCT-116 CRC cells (IC50 = 3.58 ± 0.58 µg/ml) as compared to the normal colon CCD-841 cells (IC50 = 51.95 ± 0.11 µg/ml). Arrests of the cells in G2/M phase confirms the occurrence of mitotic disruption via Dis. Activation of apoptosis factors such as Fas and Bax at the gene and protein levels along with the release of Cytochrome C from mitochondria and cleavage of Caspase cascades indicate the presence of turbulence as a result of apoptosis induction in Dis-treated cells. Moreover, NF-ƙB translocation was inhibited in Dis-treated cells. Our results indicate that Dis can target HCT-116 cells through the mitotic disruption and apoptosis induction.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links