Displaying publications 81 - 100 of 164 in total

Abstract:
Sort:
  1. Waiho K, Shi X, Fazhan H, Li S, Zhang Y, Zheng H, et al.
    Front Genet, 2019;10:298.
    PMID: 31024620 DOI: 10.3389/fgene.2019.00298
    Mud crab, Scylla paramamosain is one of the most important crustacean species in global aquaculture. To determine the genetic basis of sex and growth-related traits in S. paramamosain, a high-density genetic linkage map with 16,701 single nucleotide polymorphisms (SNPs) was constructed using SLAF-seq and a full-sib family. The consensus map has 49 linkage groups, spanning 5,996.66 cM with an average marker-interval of 0.81 cM. A total of 516 SNP markers, including 8 female-specific SNPs segregated in two quantitative trait loci (QTLs) for phenotypic sex were located on LG32. The presence of female-specific SNP markers only on female linkage map, their segregation patterns and lower female: male recombination rate strongly suggest the conformation of a ZW/ZZ sex determination system in S. paramamosain. The QTLs of most (90%) growth-related traits were found within a small interval (25.18-33.74 cM) on LG46, highlighting the potential involvement of LG46 in growth. Four markers on LG46 were significantly associated with 10-16 growth-related traits. BW was only associated with marker 3846. Based on the annotation of transcriptome data, 11 and 2 candidate genes were identified within the QTL regions of sex and growth-related traits, respectively. The newly constructed high-density genetic linkage map with sex-specific SNPs, and the identified QTLs of sex- and growth-related traits serve as a valuable genetic resource and solid foundation for marker-assisted selection and genetic improvement of crustaceans.
    Matched MeSH terms: Chromosome Mapping
  2. Arora H, Sharma A, Sharma S, Haron FF, Gafur A, Sayyed RZ, et al.
    Microorganisms, 2021 Apr 13;9(4).
    PMID: 33924471 DOI: 10.3390/microorganisms9040823
    Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to have various health benefits. However, its production has been affected due to various exogenous stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to disperse through various routes, their detection and diagnosis have become crucial. However, the quest for a point-of-care technology is still far from over. The use of an integrated approach with cultural and biological techniques for the management of Pythium spp. can be the best and most sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-specific resistance genes against Pythium spp. can be compensated with the candidate quantitative trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing a major role in disease spread, the currently available diagnostics in species identification, and the management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in different cultivars of C. annuum L.
    Matched MeSH terms: Chromosome Mapping
  3. Adler PH, Takaoka H, Sofian-Azirun M, Low VL, Ya'cob Z, Chen CD, et al.
    PLoS One, 2016;11(10):e0163881.
    PMID: 27695048 DOI: 10.1371/journal.pone.0163881
    The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country's status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam.
    Matched MeSH terms: Chromosome Mapping
  4. Tan, Soon Guan
    MyJurnal
    In various biological studies, for example those in population genetics, conservation biology, forensic science, gene mapping, breed, strain and population characterization and identification, marker assisted selection and the identification of cryptic species complexes, codominant genetic markers play important roles. The information that can be gained from them are far superior than those from dominant markers like random amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP), direct amplification of length polymorphisms (DALP) and randomly amplified microsatellites (RAM) or inter simple sequence repeats (ISSR).
    Matched MeSH terms: Chromosome Mapping
  5. Chan SH, Wee GB, Srinivasan N, Glen SP, Cheng P, Vengadasalam D, et al.
    Tissue Antigens, 1979 May;13(5):361-8.
    PMID: 91213
    Matched MeSH terms: Chromosome Mapping
  6. Sahilah Abu Mutalib, Wan Sakeenah Wan Nazari, Safiyyah Shahimi, Norhayati Yaakob, Norrakiah Abdullah Sani, Aminah Abdullah, et al.
    Sains Malaysiana, 2012;41:199-204.
    A method of PCR-restriction fragment length polymorphism (RFLP) has been utilized to differentiate the mitochondrial genes of pork and wild boar meat (Sus scrofa). The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of these two meats. The amplification product of pork and wild boar using mt-12S rRNA gene successfully produced a single band with molecular size of 456 bp. Three restriction endonucleases (AluI, HindIII and BsaJI) were used to restrict the amplification products of the mitochondrial genes. The restriction enzymes of AluI and BsaJI were identified as potential restriction endonucleases to differentiate those meats. HindIII enzyme was unable to restrict the PCR product of both meats. The genetic differences within the cyt b gene among the two meats were successfully confirmed by PCR-RFLP analysis.
    Matched MeSH terms: Chromosome Mapping
  7. Spieth PT
    Genetics, 1975 Aug;80(4):785-805.
    PMID: 1193373
    Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogenicity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.
    Matched MeSH terms: Chromosome Mapping
  8. George E, Faridah K, Trent RJ, Padanilam BJ, Huang HJ, Huisman TH
    Hemoglobin, 1986;10(4):353-63.
    PMID: 2427478
    Hematological and clinical data are presented for a young Malay patient with a homozygous (delta beta)zero-thalassemic condition. His red blood cells contained 100% fetal hemoglobin with alpha and G gamma chains only. Detailed gene mapping defined a large deletion with a 5' end between the Aha III and Apa I sites, some 200-400 bp 5' to the A gamma globin gene and a 3' end beyond sequences 17-18 kb 3' to the beta globin gene. This G gamma (A gamma delta beta)zero-type of thalassemia is different from all the other six types described before. Comparison of the hematological data of this patient with those of homozygotes for either the Sicilian or Spanish types of G gamma A gamma (delta beta)zero-thalassemia showed no differences; all homozygotes have a moderate anemia which is accentuated by the relatively high oxygen affinity of the Hb F containing erythrocytes.
    Matched MeSH terms: Chromosome Mapping
  9. Lee NK, Fong PK, Abdullah MT
    Biomed Mater Eng, 2014;24(6):3807-14.
    PMID: 25227097 DOI: 10.3233/BME-141210
    Using Genetic Algorithm, this paper presents a modelling method to generate novel logical-based features from DNA sequences enriched with H3K4mel histone signatures. Current histone signature is mostly represented using k-mers content features incapable of representing all the possible complex interactions of various DNA segments. The main contributions are, among others: (a) demonstrating that there are complex interactions among sequence segments in the histone regions; (b) developing a parse tree representation of the logical complex features. The proposed novel feature is compared to the k-mers content features using datasets from the mouse (mm9) genome. Evaluation results show that the new feature improves the prediction performance as shown by f-measure for all datasets tested. Also, it is discovered that tree-based features generated from a single chromosome can be generalized to predict histone marks in other chromosomes not used in the training. These findings have a great impact on feature design considerations for histone signatures as well as other classifier design features.
    Matched MeSH terms: Chromosome Mapping/methods*
  10. Lau CH, Drinkwater RD, Yusoff K, Tan SG, Hetzel DJ, Barker JS
    Anim. Genet., 1998 Aug;29(4):253-64.
    PMID: 9745663
    Swamp and river buffalo mitochondrial DNA (mtDNA) was sequenced for 303 bp of the cytochrome b gene for 54 animals from 14 populations, and for 158 bp of the D-loop region for 80 animals from 11 populations. Only one cytochrome b haplotype was found in river buffalo. Of the four haplotypes identified in swamp buffalo, one found in all populations is apparently ancestral both to the other swamp haplotypes and to the river haplotype. The phylogenetic relationships among the 33 D-loop haplotypes, with a cluster of 11 found in swamp buffalo only, also support the evolution of domesticated swamp and river buffalo from an ancestral swamp-like animal, most likely represented today by the wild Asian buffalo (Bubalus arnee). The time of divergence of the swamp and river types, estimated from the D-loop data, is 28,000 to 87,000 years ago. We hypothesise that the species originated in mainland south-east Asia, and that it spread north to China and west to the Indian subcontinent, where the rive type evolved and was domesticated. Following domestication in China, the domesticated swamp buffalo spread through two separate routes, through Taiwan and the Philippines to the eastern islands of Borneo and Sulawesi, and south through mainland south-east Asia and then to the western islands of Indonesia.
    Matched MeSH terms: Chromosome Mapping/veterinary
  11. Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LC, Low ET, et al.
    BMC Plant Biol, 2009;9:114.
    PMID: 19706196 DOI: 10.1186/1471-2229-9-114
    Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials.
    Matched MeSH terms: Chromosome Mapping*
  12. Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, et al.
    Nat Genet, 2020 01;52(1):56-73.
    PMID: 31911677 DOI: 10.1038/s41588-019-0537-1
    Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
    Matched MeSH terms: Chromosome Mapping/methods*
  13. Yu G, Hatta A, Periyannan S, Lagudah E, Wulff BBH
    Methods Mol Biol, 2017;1659:207-213.
    PMID: 28856653 DOI: 10.1007/978-1-4939-7249-4_18
    DNA is widely used in plant genetic and molecular biology studies. In this chapter, we describe how to extract DNA from wheat tissues. The tissue samples are ground to disrupt the cell wall. Then cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS) is used to disrupt the cell and nuclear membranes to release the DNA into solution. A reducing agent, β-mercaptoethanol, is added to break the disulfide bonds between the cysteine residues and to help remove the tanins and polyphenols. A high concentration of salt is employed to remove polysaccharides. Ethylenediaminetetraacetic acid (EDTA) stops DNase activity by chelating the magnesium ions. The nucleic acid solution is extracted with chloroform-isoamyl alcohol (24:1) or 6 M ammonium acetate. The DNA in aqueous phase is precipated with ethanol or isopropanol, which makes DNA less hydrophilic in the presence of sodium ions (Na+).
    Matched MeSH terms: Chromosome Mapping/methods
  14. Horne HN, Chung CC, Zhang H, Yu K, Prokunina-Olsson L, Michailidou K, et al.
    PLoS One, 2016;11(8):e0160316.
    PMID: 27556229 DOI: 10.1371/journal.pone.0160316
    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.
    Matched MeSH terms: Chromosome Mapping*
  15. Shi J, Zhang Y, Zheng W, Michailidou K, Ghoussaini M, Bolla MK, et al.
    Int J Cancer, 2016 Sep 15;139(6):1303-1317.
    PMID: 27087578 DOI: 10.1002/ijc.30150
    Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2)  = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry.
    Matched MeSH terms: Chromosome Mapping*
  16. Guo X, Long J, Zeng C, Michailidou K, Ghoussaini M, Bolla MK, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Nov;24(11):1680-91.
    PMID: 26354892 DOI: 10.1158/1055-9965.EPI-15-0363
    BACKGROUND: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored.

    METHODS: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium.

    RESULTS: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10(-4); OR, 1.04; 95% confidence interval (CI), 1.02-1.07] and rs77928427 (P = 1.86 × 10(-4); OR, 1.04; 95% CI, 1.02-1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r(2) ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor-binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue.

    CONCLUSION: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2.

    IMPACT: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk.

    Matched MeSH terms: Chromosome Mapping*
  17. Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, et al.
    Am J Hum Genet, 2015 Jan 08;96(1):5-20.
    PMID: 25529635 DOI: 10.1016/j.ajhg.2014.11.009
    Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
    Matched MeSH terms: Chromosome Mapping*
  18. Ahmad NS, Redjeki ES, Ho WK, Aliyu S, Mayes K, Massawe F, et al.
    Genome, 2016 Jul;59(7):459-72.
    PMID: 27253730 DOI: 10.1139/gen-2015-0153
    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous underutilized legume that has the potential to improve food security in semi-arid Africa. So far, there are a lack of reports of controlled breeding populations that could be used for variety development and genetic studies. We report here the construction of the first genetic linkage map of bambara groundnut using a F3 population derived from a "narrow" cross between two domesticated landraces (Tiga Nicuru and DipC) with marked divergence in phenotypic traits. The map consists of 238 DArT array and SSR based markers in 21 linkage groups with a total genetic distance of 608.3 cM. In addition, phenotypic traits were evaluated for a quantitative trait loci (QTL) analysis over two generations. A total of 36 significant QTLs were detected for 19 traits. The phenotypic effect explained by a single QTL ranged from 11.6% to 49.9%. Two stable QTLs were mapped for internode length and growth habit. The identified QTLs could be useful for marker-assisted selection in bambara groundnut breeding programmes.
    Matched MeSH terms: Chromosome Mapping
  19. Adler PH, Huang YT, Reeves WK, Kim SK, Otsuka Y, Takaoka H
    PLoS One, 2013;8(8):e70765.
    PMID: 23951001 DOI: 10.1371/journal.pone.0070765
    To determine the geographic origin of the black fly Simulium suzukii on Okinawa Island, Japan, macrogenomic profiles derived from its polytene chromosomes were compared with those of mainland and other insular populations of S. suzukii and of the isomorphic Simulium tani species complex. The Okinawan population is a chromosomally unique cytoform, designated 'D,' which is essentially monomorphic and differs by about 27 fixed rearrangements from the chromosomal standard sequence for the subgenus Simulium and by two fixed differences from its nearest known relative, representing the type of S. suzukii, on the main islands of Japan. Chromosomal band sequences revealed two additional, sympatric cytoforms of S. suzukii, designated 'A' and 'B,' each with species status, in Korea, and a third cytoform, designated 'C,' on Hokkaido, Japan. A new cytoform, 'K,' of S. tani from Malaysia, representing the type of S. tani, is more closely related to cytoforms in Thailand, as are populations from Taiwan previously treated as S. suzukii but more closely aligned with S. tani and newly recognized as cytoform 'L' of the latter nominal species. Rooting of chromosomal band sequences by outgroup comparisons allowed directionality of chromosomal rearrangements to be established, enabling phylogenetic inference of cytoforms. Of 41 macrogenomic rearrangements discovered in the five new cytoforms, four provide evidence for a stepwise origin of the Okinawan population from populations characteristic of the main islands of Japan. The macrogenomic approach applied to black flies on Okinawa Island illustrates its potential utility in defining source areas for other species of flies including those that might pose medical and veterinary risks.
    Matched MeSH terms: Chromosome Mapping
  20. Kashiani P, Saleh G, Panandam JM, Abdullah NA, Selamat A
    Genet Mol Biol, 2012 Jul;35(3):614-21.
    PMID: 23055801 DOI: 10.1590/S1415-47572012000400012
    A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon's information index (I) and Nei's gene diversity coefficient (Nei), Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703), while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456). Based on linkage disequilibrium (LD) measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10.
    Matched MeSH terms: Chromosome Mapping
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links