Displaying publications 81 - 89 of 89 in total

Abstract:
Sort:
  1. Khan ZA, Naz S, Khan R, Teo J, Ghani A, Almaiah MA
    Comput Intell Neurosci, 2022;2022:5112375.
    PMID: 35449734 DOI: 10.1155/2022/5112375
    Data redundancy or fusion is one of the common issues associated with the resource-constrained networks such as Wireless Sensor Networks (WSNs) and Internet of Things (IoTs). To resolve this issue, numerous data aggregation or fusion schemes have been presented in the literature. Generally, it is used to decrease the size of the collected data and, thus, improve the performance of the underlined IoTs in terms of congestion control, data accuracy, and lifetime. However, these approaches do not consider neighborhood information of the devices (cluster head in this case) in the data refinement phase. In this paper, a smart and intelligent neighborhood-enabled data aggregation scheme is presented where every device (cluster head) is bounded to refine the collected data before sending it to the concerned server module. For this purpose, the proposed data aggregation scheme is divided into two phases: (i) identification of neighboring nodes, which is based on the MAC address and location, and (ii) data aggregation using k-mean clustering algorithm and Support Vector Machine (SVM). Furthermore, every CH is smart enough to compare data sets of neighboring nodes only; that is, data of nonneighbor is not compared at all. These algorithms were implemented in Network Simulator 2 (NS-2) and were evaluated in terms of various performance metrics, such as the ratio of data redundancy, lifetime, and energy efficiency. Simulation results have verified that the proposed scheme performance is better than the existing approaches.
    Matched MeSH terms: Computer Communication Networks*
  2. Izadi D, Abawajy JH, Ghanavati S, Herawan T
    Sensors (Basel), 2015;15(2):2964-79.
    PMID: 25635417 DOI: 10.3390/s150202964
    The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches.
    Matched MeSH terms: Computer Communication Networks
  3. Khasawneh AM, Kaiwartya O, Lloret J, Abuaddous HY, Abualigah L, Shinwan MA, et al.
    Sensors (Basel), 2020 Dec 18;20(24).
    PMID: 33353003 DOI: 10.3390/s20247278
    In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.
    Matched MeSH terms: Computer Communication Networks
  4. Butt SA, Bakar KA, Javaid N, Gharaei N, Ishmanov F, Afzal MK, et al.
    Sensors (Basel), 2019 Jan 26;19(3).
    PMID: 30691141 DOI: 10.3390/s19030510
    The key concerns to enhance the lifetime of IoT-enabled Underwater Wireless Sensor Networks (IoT-UWSNs) are energy-efficiency and reliable data delivery under constrained resource. Traditional transmission approaches increase the communication overhead, which results in congestion and affect the reliable data delivery. Currently, many routing protocols have been proposed for UWSNs to ensure reliable data delivery and to conserve the node's battery with minimum communication overhead (by avoiding void holes in the network). In this paper, adaptive energy-efficient routing protocols are proposed to tackle the aforementioned problems using the Shortest Path First (SPF) with least number of active nodes strategy. These novel protocols have been developed by integrating the prominent features of Forward Layered Multi-path Power Control One (FLMPC-One) routing protocol, which uses 2-hop neighbor information, Forward Layered Multi-path Power Control Two (FLMPC-Two) routing protocol, which uses 3-hop neighbor information and 'Dijkstra' algorithm (for shortest path selection). Different Packet Sizes (PSs) with different Data Rates (DRs) are also taken into consideration to check the dynamicity of the proposed protocols. The achieved outcomes clearly validate the proposed protocols, namely: Shortest Path First using 3-hop neighbors information (SPF-Three) and Breadth First Search with Shortest Path First using 3-hop neighbors information (BFS-SPF-Three). Simulation results show the effectiveness of the proposed protocols in terms of minimum Energy Consumption (EC) and Required Packet Error Rate (RPER) with a minimum number of active nodes at the cost of affordable delay.
    Matched MeSH terms: Computer Communication Networks
  5. Zareei M, Islam AKMM, Baharun S, Vargas-Rosales C, Azpilicueta L, Mansoor N
    Sensors (Basel), 2017 Sep 16;17(9).
    PMID: 28926952 DOI: 10.3390/s17092136
    New wireless network paradigms will demand higher spectrum use and availability to cope with emerging data-hungry devices. Traditional static spectrum allocation policies cause spectrum scarcity, and new paradigms such as Cognitive Radio (CR) and new protocols and techniques need to be developed in order to have efficient spectrum usage. Medium Access Control (MAC) protocols are accountable for recognizing free spectrum, scheduling available resources and coordinating the coexistence of heterogeneous systems and users. This paper provides an ample review of the state-of-the-art MAC protocols, which mainly focuses on Cognitive Radio Ad Hoc Networks (CRAHN). First, a description of the cognitive radio fundamental functions is presented. Next, MAC protocols are divided into three groups, which are based on their channel access mechanism, namely time-slotted protocol, random access protocol and hybrid protocol. In each group, a detailed and comprehensive explanation of the latest MAC protocols is presented, as well as the pros and cons of each protocol. A discussion on future challenges for CRAHN MAC protocols is included with a comparison of the protocols from a functional perspective.
    Matched MeSH terms: Computer Communication Networks
  6. Khan MA, Hasbullah H, Nazir B, Khan IA
    ScientificWorldJournal, 2014;2014:785305.
    PMID: 25152924 DOI: 10.1155/2014/785305
    Recently, wireless sensor network (WSN) applications have seen an increase in interest. In search and rescue, battlefield reconnaissance, and some other such applications, so that a survey of the area of interest can be made collectively, a set of mobile nodes is deployed. Keeping the network nodes connected is vital for WSNs to be effective. The provision of connectivity can be made at the time of startup and can be maintained by carefully coordinating the nodes when they move. However, if a node suddenly fails, the network could be partitioned to cause communication problems. Recently, several methods that use the relocation of nodes for connectivity restoration have been proposed. However, these methods have the tendency to not consider the potential coverage loss in some locations. This paper addresses the concerns of both connectivity and coverage in an integrated way so that this gap can be filled. A novel algorithm for simultaneous-node repositioning is introduced. In this approach, each neighbour of the failed node, one by one, moves in for a certain amount of time to take the place of the failed node, after which it returns to its original location in the network. The effectiveness of this algorithm has been verified by the simulation results.
    Matched MeSH terms: Computer Communication Networks*
  7. Devan PAM, Hussin FA, Ibrahim R, Bingi K, Khanday FA
    Sensors (Basel), 2021 Jul 21;21(15).
    PMID: 34372210 DOI: 10.3390/s21154951
    Industrialization has led to a huge demand for a network control system to monitor and control multi-loop processes with high effectiveness. Due to these advancements, new industrial wireless sensor network (IWSN) standards such as ZigBee, WirelessHART, ISA 100.11a wireless, and Wireless network for Industrial Automation-Process Automation (WIA-PA) have begun to emerge based on their wired conventional structure with additional developments. This advancement improved flexibility, scalability, needed fewer cables, reduced the network installation and commissioning time, increased productivity, and reduced maintenance costs compared to wired networks. On the other hand, using IWSNs for process control comes with the critical challenge of handling stochastic network delays, packet drop, and external noises which are capable of degrading the controller performance. Thus, this paper presents a detailed study focusing only on the adoption of WirelessHART in simulations and real-time applications for industrial process monitoring and control with its crucial challenges and design requirements.
    Matched MeSH terms: Computer Communication Networks*
  8. Ghaleb FA, Al-Rimy BAS, Boulila W, Saeed F, Kamat M, Foad Rohani M, et al.
    Comput Intell Neurosci, 2021;2021:2977954.
    PMID: 34413885 DOI: 10.1155/2021/2977954
    Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.
    Matched MeSH terms: Computer Communication Networks*
  9. Al-Kharasani NM, Zulkarnain ZA, Subramaniam S, Hanapi ZM
    Sensors (Basel), 2018 Feb 15;18(2).
    PMID: 29462884 DOI: 10.3390/s18020597
    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).
    Matched MeSH terms: Computer Communication Networks
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links