Displaying publications 81 - 100 of 382 in total

Abstract:
Sort:
  1. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM
    J Biomed Biotechnol, 2011;2011:702179.
    PMID: 21960739 DOI: 10.1155/2011/702179
    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.
    Matched MeSH terms: Culture Media
  2. Arifin MA, Mel M, Abdul Karim MI, Ideris A
    J Biomed Biotechnol, 2010;2010:586363.
    PMID: 20625497 DOI: 10.1155/2010/586363
    The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was 1.93 x 10(6) cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95 x 10(5) cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3( * *)(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.
    Matched MeSH terms: Culture Media
  3. Teow SY, Mualif SA, Omar TC, Wei CY, Yusoff NM, Ali SA
    BMC Biotechnol, 2013;13:107.
    PMID: 24304876 DOI: 10.1186/1472-6750-13-107
    HIV genome is packaged and organized in a conical capsid, which is made up of ~1,500 copies of the viral capsid protein p24 (CA). Being a primary structural component and due to its critical roles in both late and early stages of the HIV replication cycle, CA has attracted increased interest as a drug discovery target in recent years. Drug discovery studies require large amounts of highly pure and biologically active protein. It is therefore desirable to establish a simple and reproducible process for efficient production of HIV-1 CA.
    Matched MeSH terms: Culture Media
  4. Ahmad WA, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF
    Appl Biochem Biotechnol, 2012 Jul;167(5):1220-34.
    PMID: 22278051 DOI: 10.1007/s12010-012-9553-7
    The present work highlighted the production of violacein by the locally isolated Chromobacterium violaceum (GenBank accession no. HM132057) in various agricultural waste materials (sugarcane bagasse, solid pineapple waste, molasses, brown sugar), as an alternative to the conventional rich medium. The highest yield for pigment production (0.82 g L⁻¹) was obtained using free cells when grown in 3 g of sugarcane bagasse supplemented with 10% (v/v) of L-tryptophan. A much lower yield (0.15 g L⁻¹) was obtained when the cells were grown either in rich medium (nutrient broth) or immobilized onto sugarcane bagasse. Violacein showed similar chemical properties as other natural pigments based on the UV-Vis, Fourier transform infrared spectroscopy, thin-layer chromatography, nuclear magnetic resonance, and mass spectrometry analysis. The pigment is highly soluble in acetone and methanol, insoluble in water or non-polar organic solvents, and showed good stability between pH 5-9, 25-100 °C, in the presence of light metal ions and oxidant such as H₂O₂. However, violacein would be slowly degraded upon exposure to light. This is the first report on the use of cheap and easily available agricultural wastes as growth medium for violacein-producing C. violaceum.
    Matched MeSH terms: Culture Media/chemistry
  5. Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM
    Molecules, 2018 Oct 18;23(10).
    PMID: 30340415 DOI: 10.3390/molecules23102689
    The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
    Matched MeSH terms: Culture Media/chemistry
  6. Rusul G, Yaacob NH
    Int J Food Microbiol, 1995 Apr;25(2):131-9.
    PMID: 7547144
    Enterotoxigenic Bacillus cereus was detected in cooked foods (17), rice noodles (3), wet wheat noodles (2), dry wheat noodles (10), spices (8), grains (4), legumes (11) and legume products (3). One hundred ninety-four (42.3%), 70 (15.3%) and 23 (5.2%) of the 459 presumptive B. cereus colonies isolated from PEMBA agar were identified as B. cereus, Bacillus thuringiensis and B. mycoides, respectively. B. cereus isolates were examined for growth temperature, pH profile and enterotoxin production using both TECRA-VIA and BCET-RPLA kits. One hundred seventy-eight (91.8%) and 164 (84%) of the strains were enterotoxigenic as determined using TECRA-VIA and BCET-RPLA, respectively. Eighty-two (50%) of the enterotoxigenic strains were capable of growing at 5 degrees C, and 142 (86.6%) grew at 7 degrees C within 7 days of incubation. The enterotoxigenic strains did not grow at pH 4.0 but 69 (42.0%) of the strains were able to grow at pH 4.5 within 7 days at 37 degrees C. The isolates were resistant to ampicillin (98.8%), cloxallin (100%) and tetracycline (61.0%), and susceptible to chloroamphenicol (87%), erythromycin (77.4%), gentamycin (100%) and streptomycin (98.7%).
    Matched MeSH terms: Culture Media
  7. Lasekan A, Abu Bakar F, Hashim D
    Waste Manag, 2013 Mar;33(3):552-65.
    PMID: 22985619 DOI: 10.1016/j.wasman.2012.08.001
    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.
    Matched MeSH terms: Culture Media
  8. Wang Y, Lee SM, Dykes GA
    Biofouling, 2013;29(3):307-18.
    PMID: 23528127 DOI: 10.1080/08927014.2013.774377
    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
    Matched MeSH terms: Culture Media/chemistry
  9. Amran EN, Sudik S, Omar AF, Mail MH, Seeni A
    Photodiagnosis Photodyn Ther, 2019 Sep;27:380-384.
    PMID: 31301437 DOI: 10.1016/j.pdpdt.2019.07.006
    The objective of this research is to examine the relationship between the color changes of phenol red and the growth of cancer cells, i.e., HeLa and DU145 cells, over a specific period of time. Normal mouse skin fibroblasts (L929 cells) were used as a reference. In this research, the color changes of phenol red due to the acidification of the cell culture medium from the growth of the cells over a period of nine hours showed potential colorimetric characteristics of cancer cells. The color changes of phenol red were observed using visible absorbance spectroscopy. The transformation of the absorbance spectra into coefficients of determination against the examined range of wavelengths created a distinctive spectral signature that signifies phenol red discoloration in cancer and normal cell culture lines.
    Matched MeSH terms: Culture Media
  10. Arzmi MH, Alnuaimi AD, Dashper S, Cirillo N, Reynolds EC, McCullough M
    Med Mycol, 2016 Nov 01;54(8):856-64.
    PMID: 27354487 DOI: 10.1093/mmy/myw042
    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.
    Matched MeSH terms: Culture Media/chemistry*
  11. Zhang Y, Sun W, Wang H, Geng A
    Bioresour Technol, 2013 Nov;147:307-314.
    PMID: 24001560 DOI: 10.1016/j.biortech.2013.08.029
    Oil palm empty fruit bunch (OPEFB), contains abundant cellulose and hemicelluloses and can be used as a renewable resource for fuel and chemical production. This study, as the first attempt, aims to convert OPEFB derived sugars to polyhydroxybutyrate (PHB). OPEFB collected from a Malaysia palm oil refinery plant was chemically pretreated and enzymatically hydrolyzed by an in-house prepared cellulase cocktail. The PHB producer, Bacillus megaterium R11, was isolated in Singapore and could accumulate PHB up to 51.3% of its cell dry weight (CDW) from both glucose and xylose. Tryptone was identified as its best nitrogen source. PHB content and production reached 58.5% and 9.32 g/L, respectively, for an overall OPEFB sugar concentration of 45 g/L. These respectively reached 51.6% and 12.48 g/L for OPEFB hydrolysate containing 60 g/L sugar with a productivity of 0.260 g/L/h.
    Matched MeSH terms: Culture Media
  12. Rathi DN, Amir HG, Abed RM, Kosugi A, Arai T, Sulaiman O, et al.
    J Appl Microbiol, 2013 Feb;114(2):384-95.
    PMID: 23176757 DOI: 10.1111/jam.12083
    Halophilic micro-organisms have received much interest because of their potential biotechnological applications, among which is the capability of some strains to synthesize polyhydroxyalkanoates (PHA). Halomonas sp. SK5, which was isolated from hypersaline microbial mats, accumulated intracellular granules of poly(3-hydroxybutyrate) [P(3HB)] in modified accumulation medium supplemented with 10% (w/v) salinity and 3% (w/v) glucose.
    Matched MeSH terms: Culture Media
  13. Samuel S, Ahmad RE, Ramasamy TS, Karunanithi P, Naveen SV, Kamarul T
    Platelets, 2019;30(1):66-74.
    PMID: 29090639 DOI: 10.1080/09537104.2017.1371287
    Platelet-rich concentrate (PRC), used in conjunction with other chondroinductive growth factors, have been shown to induce chondrogenesis of human mesenchymal stromal cells (hMSC) in pellet culture. However, pellet culture systems promote cell hypertrophy and the presence of other chondroinductive growth factors in the culture media used in previous studies obscures accurate determination of the effect of platelet itself in inducing chondrogenic differentiation. Hence, this study aimed to investigate the effect of PRC alone in enhancing the chondrogenic differentiation potential of human mesenchymal stromal cells (hMSC) encapsulated in three-dimensional alginate constructs. Cells encapsulated in alginate were cultured in serum-free medium supplemented with only 15% PRC. Scanning electron microscopy was used to determine the cell morphology. Chondrogenic molecular signature of hMSCs was determined by quantitative real-time PCR and verified at protein levels via immunohistochemistry and enzyme-linked immunosorbent assay. Results showed that the cells cultured in the presence of PRC for 24 days maintained a chondrocytic phenotype and demonstrated minimal upregulation of cartilaginous extracellular matrix (ECM) marker genes (SOX9, TNC, COL2, ACAN, COMP) and reduced expression of chondrocyte hypertrophy genes (Col X, Runx2) compared to the standard chondrogenic medium (p 
    Matched MeSH terms: Culture Media, Serum-Free*
  14. Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, et al.
    Elife, 2020 Feb 18;9.
    PMID: 32066522 DOI: 10.7554/eLife.51546
    In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.
    Matched MeSH terms: Culture Media
  15. Daud N, Taha RM
    Pak J Biol Sci, 2008 Apr 01;11(7):1055-8.
    PMID: 18810979
    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.
    Matched MeSH terms: Culture Media
  16. Hussin AS, Farouk AE, Greiner R, Salleh HM, Ismail AF
    World J Microbiol Biotechnol, 2007 Dec;23(12):1653-60.
    PMID: 27517819 DOI: 10.1007/s11274-007-9412-9
    Over two hundred bacteria were isolated from the halosphere, rhizosphere and endophyte of Malaysian maize plantation and screened for phytases activity. Thirty isolates with high detectable phytase activity were chosen for media optimization study and species identification. Ten types of bacterial phytase producers have been discovered in this study, which provides opportunity for characterization of new phytase(s) and various commercial and environmental applications. The majority of the bacterial isolates with high detectable phytase activity were of endophyte origin and 1.6% of the total isolates showed phytase activity of more than 1 U/ml. Most of the strains produced extra-cellular phytase and Staphylococcus lentus ASUIA 279 showed the highest phytase activity of 1.913 U/ml. All 30 species used in media optimization study exhibit favorable enzyme production when 1% rice bran was included in the growth media.
    Matched MeSH terms: Culture Media
  17. Tan TC, Suresh KG, Smith HV
    Parasitol Res, 2008 Dec;104(1):85-93.
    PMID: 18795333 DOI: 10.1007/s00436-008-1163-5
    Despite frequent reports on the presence of Blastocystis hominis in human intestinal tract, its pathogenicity remains a matter of intense debate. These discrepancies may be due to the varying pathogenic potential or virulence of the isolates studied. The present study represents the first to investigate both phenotypic and genotypic characteristics of B. hominis obtained from symptomatic and asymptomatic individuals. Symptomatic isolates had a significantly greater size range and lower growth rate in Jones' medium than asymptomatic isolates. The parasite cells of symptomatic isolates exhibited rougher surface topography and greater binding affinity to Canavalia ensiformis (ConA) and Helix pomatia (HPA). The present study also identifies further phenotypic characteristics, which aided in differentiating the pathogenic forms from the non-pathogenic forms of B. hominis. Blastocystis subtype 3 was found to be correlated well with the disease.
    Matched MeSH terms: Culture Media
  18. Lim HR, Khoo KS, Chew KW, Chang CK, Munawaroh HSH, Kumar PS, et al.
    Environ Pollut, 2021 Sep 01;284:117492.
    PMID: 34261213 DOI: 10.1016/j.envpol.2021.117492
    Spirulina biomass accounts for 30% of the total algae biomass production globally. In conventional process of Spirulina biomass production, cultivation using chemical-based culture medium contributes 35% of the total production cost. Moreover, the environmental impact of cultivation stage is the highest among all the production stages which resulted from the extensive usage of chemicals and nutrients. Thus, various types of culture medium such as chemical-based, modified, and alternative culture medium with highlights on wastewater medium is reviewed on the recent advances of culture media for Spirulina cultivation. Further study is needed in modifying or exploring alternative culture media utilising waste, wastewater, or by-products from industrial processes to ensure the sustainability of environment and nutrients source for cultivation in the long term. Moreover, the current development of utilising wastewater medium only support the growth of Spirulina however it cannot eliminate the negative impacts of wastewater. In fact, the recent developments in coupling with wastewater treatment technology can eradicate the negative impacts of wastewater while supporting the growth of Spirulina. The application of Spirulina cultivation in wastewater able to resolve the global environmental pollution issues, produce value added product and even generate green electricity. This would benefit the society, business, and environment in achieving a sustainable circular bioeconomy.
    Matched MeSH terms: Culture Media
  19. de Jong AW, Dieleman C, Carbia M, Mohd Tap R, Hagen F
    J Clin Microbiol, 2021 03 19;59(4).
    PMID: 33536293 DOI: 10.1128/JCM.03220-20
    Non-albicans Candida species are emerging in the nosocomial environment, with the multidrug-resistant (MDR) species Candida auris being the most notorious example. Consequently, rapid and accurate species identification has become essential. The objective of this study was to evaluate five commercially available chromogenic media for the presumptive identification of C. auris Two novel chromogenic formulations, CHROMagar Candida Plus (CHROMagar) and HiCrome C. auris MDR selective agar (HiMedia), and three reference media, CandiSelect (Bio-Rad), CHROMagar Candida (CHROMagar), and Chromatic Candida (Liofilchem), were inoculated with a collection of 9 genetically diverse C. auris strains and 35 strains from closely related comparator species. After 48 h of incubation, the media were evaluated for their ability to detect and identify C. auris All media had the same limitations in the differentiation of the more common species Candida dubliniensis and Candida glabrata Only on CHROMagar Candida Plus did C. auris colonies develop a species-specific coloration. Nevertheless, the closely related pathogenic species Candida pseudohaemulonii and Candida vulturna developed a similar appearance as C. auris on this medium. CHROMagar Candida Plus was shown to be superior in the detection and identification of C. auris, with 100% inclusivity for C. auris compared to 0% and 33% for the reference media and HiCrome C. auris MDR selective agar, respectively. Although C. vulturna and C. pseudohaemulonii can cause false positives, CHROMagar Candida Plus was shown to be a valuable addition to the plethora of mostly molecular methods for C. auris detection and identification.
    Matched MeSH terms: Culture Media
  20. Okomoda VT, Abdulrahman AK, Khatoon H, Mithun S, Oladimeji AS, Abol-Munafi AB, et al.
    Plants (Basel), 2021 Apr 13;10(4).
    PMID: 33924298 DOI: 10.3390/plants10040755
    This study determined the effect of growth media and culture concentration on the growth, proximate, and microelement composition of Ankistrodesmus falcatus. The culture of A. falcatus was done using three media, namely Modified COMBO Medium (COMBO), Bold's Basal Medium (BBM), and Bristol, at two concentrations (50% and 100%). The results obtained show that the cell density (>3.5 × 107 cells/mL), optical density (>0.24), and specific growth rate (>0.429%/day) were significantly higher (p ≤ 0.05) in BBM and COMBO than in Bristol (<3.1 × 107 cells/mL; <0.23; <0.416%/day, respectively) at both concentrations. However, biomass was higher in BBM (>2.20 g/L) than in COMBO (1.87-2.13 g/L), while Bristol had the lowest value observed (1.70-1.73 g/L). Biochemical and microelement composition showed variations between media and at the different concentrations, with higher values observed in BBM and COMBO. Based on the growth parameters and nutritional composition, it was concluded that BBM and COMBO were better media for the propagation of A. falcatus growth than Bristol. The study also demonstrated that the microalgae can be cultured using half of the media's concentration to lower production costs.
    Matched MeSH terms: Culture Media
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links