Displaying publications 81 - 100 of 595 in total

Abstract:
Sort:
  1. Hasmoni SS, Yusoff K, Tan WS
    J Gen Appl Microbiol, 2005 Apr;51(2):125-31.
    PMID: 15942873
    The nucleocapsids of hepatitis B virus (HBV) are made of 180 or 240 subunits of core proteins or known as core antigens (HBcAg). A fusion bacteriophage bearing the WSFFSNI sequence that interacts tightly to HBcAg was employed as a diagnostic reagent for the detection of the antigen using the phage-enzyme-linked immunosorbent (phage-ELISA), dot blot and immunoprecipitation assays. The results from phage-ELISA and dot blot assay showed that as low as 10 ng of HBcAg can be detected optimally by 1.0x10(12) pfu/ml fusion M13 bacteriophage. The sensitivity of the dot blot assay corresponds with that of the phage-ELISA. HBcAg in HBV positive serum samples can also be detected using the fusion phage via the phage-ELISA and phage-dot blot assay. The phage cross-linked to cyanogen bromide (CNBr) activated agarose can also be used to precipitate HBcAg in bacterial lysate. The optimum amount of phage needed for cross-linking to 1 g of agarose is about 7.0x10(6) pfu/ml which could also precipitate purified and unpurified HBcAg in bacterial lysate. This study demonstrates the potential of fusion bacteriophage bearing the sequence WSFFSNI as a diagnostic reagent and a ligand for the detection and purification of HBcAg respectively.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  2. Wong CL, Sieo CC, Tan WS
    J Virol Methods, 2013 Nov;193(2):611-9.
    PMID: 23933075 DOI: 10.1016/j.jviromet.2013.07.053
    Foot-and-mouth disease (FMD) is a highly contagious epidemic disease threatening the cattle industry since the sixteenth century. In recent years, the development of diagnostic assays for FMD has benefited considerably from the advances of recombinant DNA technology. In this study, the immunodominant region of the capsid protein VP1 of the foot-and-mouth disease virus (FMDV) was fused to the T7 bacteriophage and expressed on the surface of the bacteriophage capsid protein. The recombinant protein of about 42 kDa was detected by the anti-T7 tag monoclonal antibody in Western blot analysis. Phage ELISA showed that both the vaccinated and positive infected bovine sera reacted significantly with the recombinant T7 particle. This study demonstrated the potential of the T7 phage displaying the VP1 epitope as a diagnostic reagent.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  3. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J Virol Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  4. Sue MJ, Yeap SK, Omar AR, Tan SW
    Biomed Res Int, 2014;2014:653014.
    PMID: 24971343 DOI: 10.1155/2014/653014
    Polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA) is an immunodetection method that can quantify PCR product directly after immobilization of biotinylated DNA on a microplate. This method, which detects nucleic acid instead of protein, is a much more sensitive method compared to conventional PCR method, with shorter analytical time and lower detection limit. Its high specificity and sensitivity, together with its semiquantitative ability, give it a huge potential to serve as a powerful detection tool in various industries such as medical, veterinary, and agricultural industries. With the recent advances in PCR-ELISA, it is envisaged that the assay is more widely recognized for its fast and sensitive detection limit which could improve overall diagnostic time and quality.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  5. Kirnpal-Kaur BS, Yap KL, Tan SC
    Malays J Pathol, 1997 Dec;19(2):133-6.
    PMID: 10879254
    A blocking test was incorporated into the commercial IDEIA Adenovirus test (DAKO Diagnostics Ltd., Cambridgeshire, UK) to detect false positive results when faecal specimens were tested for adenovirus antigen. Immune rabbit serum raised against pooled adenovirus particles from human faecal specimens, together with the pre-immune serum, was used. Assessment of positive showed that false positives were produced under two different conditions: when results were based on visual determination instead of a cut-off value determined from photometric reading, and when absorbance values were not immediately read at the end of the test. Under the optimum condition for reading and assessment of test results (immediate reading and photometric determination), 11% of 65 adenovirus-positive samples were checked by the blocking ELISA as false positives. The rest of the specimens showed blocking of positive absorbance values by 70 to 98%. ELISA was found to be more sensitive than immune electron microscopy on samples with lower antigen concentration.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  6. Lee MJ, Ramanathan S, Mansor SM, Tan SC
    Anal Biochem, 2020 06 15;599:113733.
    PMID: 32302607 DOI: 10.1016/j.ab.2020.113733
    An enzyme-linked immunosorbent assay for detection of mitragynine, other closely related Kratom alkaloids and metabolites was developed using polyclonal antibodies. Mitragynine was conjugated to a carrier protein, cationized-bovine serum albumin using Mannich reaction. The synthesized antigen was injected into rabbits to elicit specific polyclonal antibodies against mitragynine. An enzyme conjugate was synthesized for evaluating its performance with the antibodies produced. The assay had an IC50 of 7.3 ng/mL with a limit of detection of 15 ng/mL for mitragynine. Antibody produced have high affinity for mitragynine (100%), other closely related Kratom alkaloids such as paynantheine (54%), speciociliatine (63%), 7α-hydroxy-7H-mitragynine (83%) and cross-reacted with metabolites 9-O-demethyl mitragynine (79%), 16-carboxy mitragynine (103%), 9-O-demethyl mitragynine sulfate (263%), 9-O-demethyl mitragynine glucuronide (60%), 16-carboxy mitragynine glucuronide (60%), 9-O-demethyl-16-carboxy mitragynine sulfate (270%) and 17-O-demethyl-16,17-dihydro mitragynine glucuronide (34%). It showed cross-reactivity less than 0.01% to reserpine, codeine, morphine, caffeine, methadone, amphetamine, and cocaine. Ten-fold dilution urine was used in the assay to reduce the matrix effects. The recovery ranged from 83% to 112% with variation coefficients in intraday and interday less than 8% and 6%, respectively. The ELISA turned out to be a convenient tool to diagnose mitragynine, other closely related Kratom alkaloids and metabolites in human urine samples.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  7. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH
    Acta Trop, 2015 Sep;149:86-93.
    PMID: 26026717 DOI: 10.1016/j.actatropica.2015.05.020
    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types of α-neurotoxins and cardiotoxins in sufficient amount, may also help to improve the efficacy and broaden the neutralization spectrum of the antivenom.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  8. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  9. Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NH
    Toxicon, 2014 Mar;79:37-44.
    PMID: 24412778 DOI: 10.1016/j.toxicon.2013.12.011
    The knowledge of venom pharmacokinetics is essential to improve the understanding of envenomation pathophysiology. Using a double-sandwich ELISA, this study investigated the pharmacokinetics of the venom of hump-nosed pit viper (Hypnale hypnale) following intravenous and intramuscular injections into rabbits. The pharmacokinetics of the venom injected intravenously fitted a three-compartment model. There is a rapid (t1/2π = 0.4 h) and a slow (t1/2α = 0.8 h) distribution phase, followed by a long elimination phase (t1/2β = 19.3 h) with a systemic clearance of 6.8 mL h(-1) kg(-1), consistent with the prolonged abnormal hemostasis reported in H. hypnale envenomation. On intramuscular route, multiple peak concentrations observed in the beginning implied a more complex venom absorption and/or distribution pattern. The terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were nevertheless not significantly different (p > 0.05) from that of the venom injected intravenously. The intramuscular bioavailability was exceptionally low (Fi.m. = 4%), accountable for the highly varied median lethal doses between intravenous and intramuscular envenomations in animals. The findings indicate that the intramuscular route of administration does not significantly alter the pharmacokinetics of H. hypnale venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  10. Siew QY, Tan SH, Pang EL, Loh HS, Tan MTT
    Analyst, 2021 Mar 21;146(6):2009-2018.
    PMID: 33523052 DOI: 10.1039/d0an02219e
    The envelope glycoprotein domain III (EDIII) of dengue virus (DENV) has been recognised as the antigenic region responsible for receptor binding. In the present work, we have proposed a novel immunosensor constructed on a graphene-coated screen-printed carbon electrode (SPCE) using plant-derived EDIII as the probe antigen to target DENV IgG antibodies. The developed immunosensor demonstrated high sensitivity towards DENV IgG within a wide linear working range (125-2000 ng mL-1) under the optimised sensing conditions. The limit of detection was determined to be 22.5 ng mL-1. The immunosensor also showed high specificity towards DENV IgG, capable of differentiating DENV IgG from the antibodies of other infectious diseases including the similarly structured Zika virus (ZIKV). The ability of the immunosensor to detect dengue antibodies in serum samples was also verified by conducting tests on mouse serum samples. The proposed immunosensor was able to provide a binary (positive/negative) response towards the serum samples comparable to the conventional enzyme-linked immunosorbent assay (ELISA), indicating promising potential for realistic applications.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  11. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  12. Mitra NK, Bindal U, Eng Hwa W, Chua CL, Tan CY
    Int J Clin Exp Pathol, 2015;8(10):12041-52.
    PMID: 26722389
    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund's adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 10(5) MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  13. Lingam TMC, Tan KY, Tan CH
    Toxicon, 2019 Oct;168:95-97.
    PMID: 31254600 DOI: 10.1016/j.toxicon.2019.06.227
    Daboia siamensis monovalent antivenom (DSMAV, Thailand) exhibited comparable immunoreactivity toward the venoms of eastern Russell's vipers from Thailand and Indonesia. It also effectively neutralized the procoagulant and lethal effects of both venoms, showing high potency. The Indonesian heterologous trivalent antivenom SABU (Serum Anti Bisa Ular), however, has very weak immunoreactivity and it failed to neutralize the Russell's viper venoms. DSMAV appears to be the appropriate choice of antivenom to treat Russell's viper envenoming.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  14. Loh HS, Mohd-Azmi ML, Sheikh-Omar AR, Zamri-Saad M, Tam YJ
    Acta Virol., 2007;51(1):27-33.
    PMID: 17432941
    The present study described the kinetics of Rat cytomegalovirus (RCMV) infection in newborn rats by monitoring infectious virus and viral antigens in various organs, viral DNA in the blood (DNAemia) and antibody response. These parameters were evaluated quantitatively using double-antibody sandwich ELISA (DAS-ELISA), real-time PCR, indirect ELISA and virus infectivity assay. For the first time DAS-ELISA was used for detection of RCMV antigen directly from organ samples. The relationships between the presence of viral antigens in the infected organs and antibody levels were established by the Spearman's rank test. It was found that the virus was present in the blood, spleen, liver, lungs, and kidneys earlier than in the salivary glands. Furthermore, the early immunity of the newborn rats led to a delayed seroconversion. We suggested that the prolonged presence of the virus in salivary glands could augment the antibody response that conversely might be responsible for a reduction of viremia. This study expanded our understanding of RCMV pathogenesis leading to improved therapeutic and preventive treatment regimens particularly for the neonatal Human cytomegalovirus (HCMV) infections. Additionally, the detection procedures developed in this study such as DAS-ELISA and real-time PCR could serve as alternative techniques for rapid screening of large number of samples.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  15. Mehrbod P, Ideris A, Omar AR, Hair-Bejo M, Tan SW, Kheiri MT, et al.
    Virol J, 2012;9:44.
    PMID: 22340010 DOI: 10.1186/1743-422X-9-44
    The influenza virus is still one of the most important respiratory risks affecting humans which require effective treatments. In this case, traditional medications are of interest. HESA-A is an active natural biological compound from herbal-marine origin. Previous studies have reported that the therapeutic properties of HESA-A are able to treat psoriasis vulgaris and cancers. However, no antiviral properties have been reported.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  16. Abdul Hamid N, Sadiq MB, Ramanoon SZ, Mansor R, Watanabe M, Md Isa NM, et al.
    Animals (Basel), 2020 Jul 06;10(7).
    PMID: 32640507 DOI: 10.3390/ani10071139
    (1) Background: The objective of this study was to determine the prevalence of T. gondii in meats of cattle, goat and sheep from wet markets in Klang Valley, and abattoirs in Selangor, Malaysia; (2) Methods: A total of 192 meat samples were purchased from 51 wet markets in six districts in Klang Valley (Gombak, Klang, Kuala Lumpur, Hulu Langat, Petaling and Putrajaya). Meanwhile, a total of 200 diaphragm samples were collected from two government abattoirs located in Shah Alam and Banting, Selangor. All meat juices from samples were subjected to an indirect-ELISA kit for the presence of T. gondii IgG antibodies. Furthermore, all 184 meat samples of goat and sheep were subjected to conventional nested PCR (B1 genes) for the detection of T. gondii DNA; (3) Results: T. gondii antibodies were detected in 25% (n = 98/392) of the samples with seroprevalence of 9.1% (19/208, CI: 5.9%-13.8%) in cattle meat; 54.7% (41/75, 95% CI: 43.5%-65.4%) in goat meat and 34.9% (38/109, CI: 26.6%-44.2%) in sheep meat. No T. gondii DNA was detected in any of the meat samples of goat and sheep. T. gondii seropositivity in wet market samples was higher in goat (OR = 37.1 CI 12.4-110.3) and sheep meat (OR 9.03 CI: 3.28-24.8) compared to cattle meat (OR = 1.0) At univariate level, meat from non-licensed abattoirs (OR = 6.0 CI: 2.9-12.3) and female animals (OR = 6.7; CI 1.9-22.6) had higher risks of being seropositive for T. gondii antibodies than licensed abattoirs and male animals, respectively. (4) Conclusions: This is the first report of seroprevalence of T. gondii in ruminant meats for human consumption in Malaysia. The findings signified high exposure of meat samples from wet markets to T. gondii and the need for control measures to reduce the likelihood of infection when such raw or undercooked meats are consumed.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  17. Ambily R, Mini M, Siju J, Vamshikrishna S, Abhinay G, Gleeja VL, et al.
    Trop Biomed, 2019 Sep 01;36(3):654-663.
    PMID: 33597487
    A study was undertaken to evaluate the relevance of detecting IgM and IgG antibodies in diagnosis of canine leptospirosis in Kerala, a southern state of India, which is endemic for the disease. A total of 205 blood (35 from healthy vaccinated, 30 from healthy unvaccinated and 140 from diseased dogs) and 151 urine samples (11 from healthy vaccinated and 140 from diseased dogs) were collected from three districts of Kerala, Thrissur, Palakkad and Kozhikode with high incidence of leptospirosis. Recombinant LipL41 protein was used as antigen and IgG and IgM based ELISAs were standardized. The results were compared with the gold standard test, microscopic agglutination test (MAT). The MAT positive samples (146 samples) were divided into those having titre >1:800 and those between 1:100 and 1:400 in view that the former constituted the acute cases. It was found that IgM ELISA was more specific and sensitive in detecting acute cases (MAT >1:800) whereas IgG ELISA was less specific. In case of seroprevalence studies (MAT titre 1:100 to 1: 400), IgG ELISA was found to be more sensitive and specific than IgM ELISA. Receiver operating characteristic curves when plotted, revealed the accuracy of IgM ELISA in acute leptospirosis. Many samples were positive for both IgG and IgM antibodies. Polymerase Chain Reaction (PCR) targeting lipl41 gene was standardized and urine and blood samples from the same dogs were tested. PCR was found to be the specific test for the early detection of leptospires in blood even before seroconversion. However, PCR analysis of the urine samples was found to be insensitive. Hence, it can be concluded that the diagnostic strategies should be modified, and a combination of serological and molecular tests is recommended in endemic areas rather than simple detection of IgM or IgG antibodies, for the early detection of acute clinical cases of leptospirosis.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods; Enzyme-Linked Immunosorbent Assay/veterinary
  18. Rajendren, S.K., Khairuddin, N.H., Sumita, S.
    Jurnal Veterinar Malaysia, 2019;31(1):28-33.
    MyJurnal
    Endurance horses continuously undergoing training. This will cause inflammation which leads to acute phase reaction with the production of acute phase protein, especially serum amyloid A (SAA). The purpose of this study was to establish concentration of SAA in normal endurance horses in the blood serum using two-site enzyme linked immunoassay (ELISA) technique. Horse sera were aliquoted from blood taken from jugular venipuncture. The highest concentration of SAA was observed in horses rested between 12 months and 24 months. The lowest concentration of SAA was noticed in horses rested more than 24 months. All the horses between 6 and 11 years old have high SAA concentration. When resting intervals were compared against gender of the horses, it was noted that all mares have high SAA concentration compared to gelding and stallion. Whereas SAA concentration in Thoroughbred horses were high compared to Arabian horses in all rest intervals. The SAA concentration in horses rested more than 24 months was low most probably because the horses recovered well from the inflammatory process happened during the endurance race.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  19. Yee SF, Chu CH, Poili E, Sum MSH
    J Virol Methods, 2017 02;240:69-72.
    PMID: 27923590 DOI: 10.1016/j.jviromet.2016.12.001
    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay
  20. Anuar H, Greer GJ, Ow-Yang CK, Sukumaran KD
    PMID: 6398916
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links