Displaying publications 81 - 100 of 225 in total

Abstract:
Sort:
  1. Leow T, Leong P, Eeu T, Ibrahim Z, Hussin R
    Sains Malaysiana, 2014;43:929-934.
    Study of a series of lead lithium borophosphate glass samples was performed to determine the structural and luminescence properties. The glass samples containing the composition of 20Pb0-xLi20-30B 20 3-(50-x)P 20 5-2TiO 2 (where x = 0, 5, 10, 15, 20) system were prepared using melt-quenching technique. The Pb0-Li20-B 20 3-P20 5-Ti0 2 samples were investigated for structural properties using Fourier transform infrared and photoluminescence spectroscopy for studies of luminescence properties. The results from FTIR showed the presence of trigonal and tetrahedral PO4' PO3, BO4 and B03 groups within the host network structure. The samples exhibit luminescence emission centered at 420, 482 and 496 nm when excited at 300 nm wavelength. The emission peak at 420 nm were assigned to F center emission and charge-transfer transition of Ti4+ ions. The results showed that emission intensity was dependent on lithium contents in Ti-doped lead lithium borophosphate glass composition.
    Matched MeSH terms: Glass
  2. Baki S, Tan L, Kan C, Kamari H, Noor A, Mardi M
    Sains Malaysiana, 2014;43:843-850.
    Multicomposition of Er3+ -Y11-3+ codoped tellurite oxide, Te02-ZnO-PbO-Ti02-Na20 glass has been investigated. A detailed spectroscopic study of the Judd-Ofelt analysis has been performed from the measured absorption spectrum in order to obtain the intensity parameters S2, (t=2, 4, 6). The calculated S2, values were then utilized in the determination of transition probabilities, radiative lifetimes and branching ratios of the Er3+ transitions between the J(upper)-J'(lower) manifolds. Both visible upconversion and near-infrared spectra were characterized under the 980 nm laser diode excitation at room temperature.
    Matched MeSH terms: Glass
  3. Ooi P, Ching C, Ahmad M, Ng S, Abdullah M, Abu Hassan H, et al.
    Sains Malaysiana, 2014;43:617-621.
    Cupric oxide (CuO) thin films were prepared on a glass and silicon (Si) substrates by radio frequency magnetron sputtering system. The structural, optical and electrical properties of CuO films were characterized by X-ray diffraction (xRD), atomic force microscopy (AFM), Fourier transform infrared spectrometer, ultra-violet visible spectrophotometer, respectively, four point probe techniques and Keithley 4200 semiconductor characterization system. The xRD result showed that single phase CuO thin films with monoclinic structure were obtained. AFM showed well organized nano-pillar morphology with root mean square surface roughness for CuO thin films on glass and Si substrates were 3.64 and 1.91 nm, respectively. Infrared reflectance spectra shown a single reflection peak which is corresponding to CuO optical phonon mode and it confirmed that only existence of CuO composition on both substrates. The optical direct band gap energy of the CuO film grown on glass substrate, which is calculated from the optical transmission measurement was 1.37 eV. Finally, it was found that the deposited CuO films are resistive and the palladium formed ohmic contact for CuO on glass and schottky contact for CuO on Si.
    Matched MeSH terms: Glass
  4. Chen CL, Parolia A, Pau A, Celerino de Moraes Porto IC
    Aust Dent J, 2015 Mar;60(1):65-72.
    PMID: 25721280 DOI: 10.1111/adj.12275
    Dentine hypersensitivity (DH) occurs on exposed dentine and is dependent on the patency of dentinal tubules. This study compared the effectiveness of red propolis extract (RPE), calcium sodium phosphosilicate (Novamin) and arginine-calcium carbonate (ACC) in occluding dentine tubules.
    Matched MeSH terms: Glass
  5. Goh YF, Akram M, Alshemary AZ, Hussain R
    PMID: 26042687 DOI: 10.1016/j.msec.2015.04.013
    Calcium sulfate-bioactive glass (CSBG) composites doped with 5, 10 and 20 mol% Fe were synthesized using quick alkali sol-gel method. X-ray diffraction (XRD) data of samples heated at 700 °C revealed the presence of anhydrite, while field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) characterization confirmed the formation of nano-sized CSBGs. The UV-vis studies confirmed that the main iron species in 5% Fe and 10% Fe doped CSBGs were tetrahedral Fe(III) whereas that in 20% Fe doped CSBG were extra-framework FeOx oligomers or iron oxide phases. Measurement of magnetic properties of the samples by vibrating sample magnetometer (VSM) showed very narrow hysteresis loop with zero coercivity and remanence for 10% Fe and 20% Fe doped CSBG, indicating that they are superparamagnetic in nature. All samples induced the formation of apatite layer with Ca/P ratio close to the stoichiometric HA in simulated body fluid (SBF) assessment.
    Matched MeSH terms: Glass/chemistry*
  6. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Towler MR
    Mater Sci Eng C Mater Biol Appl, 2015 Aug;53:175-88.
    PMID: 26042705 DOI: 10.1016/j.msec.2015.04.035
    Biodegradable elastomers have clinical applicability due to their biocompatibility, tunable degradation and elasticity. The addition of bioactive glasses to these elastomers can impart mechanical properties sufficient for hard tissue replacement. Hence, a composite with a biodegradable polymer matrix and a bioglass filler can offer a method of augmenting existing tissue. This article reviews the applications of such composites for skeletal augmentation.
    Matched MeSH terms: Glass*
  7. Lim TY, Wagiran H, Hussin R, Hashim S
    Appl Radiat Isot, 2015 Aug;102:10-4.
    PMID: 25933405 DOI: 10.1016/j.apradiso.2015.04.005
    The paper presents the thermoluminescence (TL) response of strontium tetraborate glass subjected to electron irradiations at various Dy2O3 concentrations ranging from 0.00 to 1.00mol%. All glass samples exhibited single broad peak with maximum peak temperature positioned at 170-215°C. The optimum TL response was found at Dy2O3 concentration 0.75mol%. This glass showed good linearity and higher sensitivity for 7MeV compared to 6MeV electrons. Analysis of kinetic parameters showed that the glasses demonstrate second order kinetic.
    Matched MeSH terms: Glass
  8. Yatongchai C, Placek LM, Curran DJ, Towler MR, Wren AW
    J Biomater Appl, 2015 Nov;30(5):495-511.
    PMID: 26116020 DOI: 10.1177/0885328215592866
    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.
    Matched MeSH terms: Glass/chemistry*
  9. Mhareb MH, Hashim S, Ghoshal SK, Alajerami YS, Saleh MA, Razak NA, et al.
    Luminescence, 2015 Dec;30(8):1330-5.
    PMID: 25828828 DOI: 10.1002/bio.2902
    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.
    Matched MeSH terms: Glass/chemistry*
  10. Jafari SM, Jordan TJ, Distefano G, Bradley DA, Spyrou NM, Nisbet A, et al.
    Br J Radiol, 2015;88(1055):20140804.
    PMID: 26258442 DOI: 10.1259/bjr.20140804
    To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification.
    Matched MeSH terms: Glass*
  11. Mohd Zainal Abidin R, Luddin N, Shamsuria Omar N, Mohamed Aly Ahmed H
    J Clin Pediatr Dent, 2015;39(3):235-40.
    PMID: 26208068 DOI: 10.17796/1053-4628-39.3.235
    To compare the cytotoxicity of conventional GIC and Resin Modified GIC (RMGIC) polymerized at 2 different times on stem cells from human exfoliated deciduous teeth (SHED).
    Matched MeSH terms: Glass Ionomer Cements/toxicity*
  12. Dahlia Lema, A.M., Kartini, K., Dyg. Siti Quraisyah, A.A., Anthony, A.D., Nuraini, T., Siti Rahimah, R.
    MyJurnal
    Sludge is an unavoidable product of wastewater treatment that creates problems of disposal. Increasingly, strict environmental control regulations have resulted in limitations on sludge disposal options.Disposal by incineration has been found to be a good option. In this research, application of domestic waste sludge powder (DWSP) was used as cement replacement in concrete mix. This study utilised replacement of 3 %, 5 %, 7 %, 10 % and 15 % by weight of OPC with water binder (w/b) ratio of 0.60, 0.55 and 0.40 for Grade 30, Grade 40 and Grade 50 respectively. The performance of DWSP concrete in terms of its compressive strength, water absorption, water permeability and Rapid Chloride Ion penetration were investigated. All values of compressive strength for DWSP concrete were lower compared to the OPC control, and the strength decreased as the percentage of replacement with DWSP increased for Grade 30 and Grade 50, except for Grade 40 at replacement of 7 %. Meanwhile, water absorption and water permeability for the DWSP concrete increased as the replacement increased. Overall, with further research in producing quality DWSP, the potential of using this waste as a cement replacement material is very promising.
    Matched MeSH terms: Glass Ionomer Cements
  13. Azlisham, N.A.F., Abdul Rahman, F.S., Mohamad, D.
    MyJurnal
    The objective of the present study is to evaluate the effect of incorporation of 3- acetylcoumarin (3-AC), an antibacterial agent, on the mechanical and surface morphology of glass ionomer cement (GIC). A conventional GIC, Fuji II LC, was used as a control. 3-AC was incorporated into GIC during its manipulation at percentage of 2% and 5% (wt/wt). Flexural strength of the specimens were analysed using Shimadzu AGX-Plus while morphological evaluation of the specimens were observed using Scanning Electron Microscope (SEM). Oneway analysis (ANOVA) with post-hoc Bonferroni multiple-range test was used to determine the significant differences among the groups. Statistically, the incorporation of 2% (wt/wt) of 3-AC into GIC showed a significantly lower flexural strength (p
    Matched MeSH terms: Glass Ionomer Cements
  14. Abd Rahman, R., Mohamad, D., Ab Ghani, Z., Hasan, H., Abdullah, N.A.
    MyJurnal
    The objective of the study was to asses the adhesion of Streptococcus mutans on nanofilled and microfilled composite resin and glass ionomer cement restorative materials. Glass ionomer cements; KetacTM N100 (nanofilled) and Fuji IITM LC (microfilled) and composite resins; FiltekTM Z350 (nanofilled) and FiltekTM Z250 (microhybrid) were packed in acrylic mould of 2 mm thickness and 5 mm diameter. All samples were light-cured and polished with Sof-Lex discs. All materials were cultured with the exponential phase of S. mutans cultivation. Surface roughness values were assessed using Atomic Force Microscope (AFM, Ambios, USA) at time intervals (7hrs, 24 hrs, 7 days, 14 days and 21 days). The morphology of S. mutans on materials was observed after 24 hour incubation of S. mutan on materials under Scanning Electron Microscope (SEM, Quanta FEG 450). Within groups, results showed that both nanofilled materials had lower surface roughness and less adhesion of S. mutans compared to microfilled materials. This study would enhance the clinical knowledge especially in aesthetic area and improve the longevity of the dental restoration.
    Matched MeSH terms: Glass Ionomer Cements
  15. Mat Uzir Wahi, Azman Hassan, Akos Noel Ibrahim, Nurhayati Ahmad Zawawi, Kunasegeran K
    Sains Malaysiana, 2015;44:1615-1623.
    Polylactic acid (PLA)/Epoxidized natural rubber (ENR-50) blends were prepared by melt extrusion followed by injection
    molding to fabricate the test samples. The effect of ENR-50 loadings on the morphological, mechanical, chemical
    resistance and water absorption properties of the blends were studied using standard methods. The toughness of the
    blend improved with ENR loading up to 20 wt. % but flexural and tensile strength decreased. The balanced mechanical
    properties were obtained at 20 wt. % ENR-50 loading. SEM showed good distribution and increased ENR particle size
    as ENR content increased from 10 to 30 wt. %. The differential scanning calorimeter (DSC) showed a steady drop in
    crystallization temperature (Tc
    ) as ENR content increases while the glass transition temperature (Tg
    ) remained unchanged.
    Water absorption was observed to increase with ENR loadings. Increase in ENR content was also observed to reduce the
    chemical resistance of the blends.
    Matched MeSH terms: Glass
  16. Sirajuddin N, Md Jamil M
    Sains Malaysiana, 2015;44:811-818.
    Synthetic materials that are capable of healing upon damage are being developed at a rapid pace because of their
    many potential applications. Here, new healing chemically cross-linked hydrogel of poly(2-hydroxyethyl methacrylate)
    (pHEMA) was prepared. The healing hydrogel was achieved by heating above its glass transition (Tg
    ). The intermolecular
    diffusion of dangling chain and the chain slippage led to healing of the gel. The peaks in attenuated total reflectance
    (ATR) confirmed that hydrogel was formed while rheological studies had determined the minimum for healing temperature
    is 48.5o
    C. The results showed that ratio stress of the healable hydrogel can reach until 92 and 91% of first and second
    healing cycle, respectively. The morphology of the sample was carried out to evaluate the self-property of hydrogel.
    Matched MeSH terms: Glass
  17. Mahmood Raouf R, Abdul Wahab Z, Azowa Ibrahim N, Abidin Talib Z, Chieng BW
    Polymers (Basel), 2016 Apr 14;8(4).
    PMID: 30979233 DOI: 10.3390/polym8040128
    The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV) radiation exposure to transparent poly(methylmethacrylate) (PMMA), which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB). The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.
    Matched MeSH terms: Glass
  18. Wan Dagang WR, Bowen J, O'Keeffe J, Robbins PT, Zhang Z
    Biotechnol Lett, 2016 May;38(5):787-92.
    PMID: 26892223 DOI: 10.1007/s10529-016-2047-x
    The adhesion of colloidal probes of stainless steel, glass and cellulose to Pseudomonas fluorescens biofilms was examined using atomic force microscopy (AFM) to allow comparisons between surfaces to which biofilms might adhere.
    Matched MeSH terms: Glass
  19. Othman R, Vladisavljević GT, Thomas NL, Nagy ZK
    Colloids Surf B Biointerfaces, 2016 May 01;141:187-195.
    PMID: 26852102 DOI: 10.1016/j.colsurfb.2016.01.042
    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy.
    Matched MeSH terms: Glass/chemistry*
  20. Ehsan MA, Naeem R, Khaledi H, Sohail M, Hakeem Saeed A, Mazhar M
    Dalton Trans, 2016 Jun 21;45(25):10222-32.
    PMID: 27230711 DOI: 10.1039/c6dt01016d
    Cobalt titanate-titania composite oxide films have been grown on FTO-coated glass substrates using a single-source heterometallic complex [Co2Ti4(μ-O)6(TFA)8(THF)6]·THF () which was obtained in quantitative yield from the reaction of diacetatocobalt(ii) tetrahydrate, tetraisopropoxytitanium(iv), and trifluoroacetic acid from a tetrahydrofuran solution. Physicochemical investigations of complex have been carried out by melting point, FT-IR, thermogravimetric and single-crystal X-ray diffraction analyses. CoTiO3-TiO2 films composed of spherical objects of various sizes have been grown from by aerosol-assisted chemical vapor deposition at different temperatures of 500, 550 and 600 °C. Thin films characterized by XRD, Raman and X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis have been explored for electrochemical detection of dopamine (DA). The cyclic voltammetry with the CoTiO3-TiO2 electrode showed a DA oxidation peak at +0.215 V while linear sweep voltammetry displayed a detection limit (LoD) of 0.083 μM and a linear concentration range of 20-300 μM for DA. Thus, the CoTiO3-TiO2 electrode is a potential candidate for the sensitive and selective detection of DA.
    Matched MeSH terms: Glass/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links