Displaying publications 81 - 100 of 145 in total

Abstract:
Sort:
  1. Lye, Munn-Sann, Aishah-Farhana Shahbudin, Tey, Yin-Yee, Tor, Yin-Sim, Ling, King-Hwa, Normala Ibrahim, et al.
    Neuroscience Research Notes, 2019;2(3):20-28.
    MyJurnal
    Major depressive disorder (MDD) compromises the individual’s capacity for self-care and productivity. Single nucleotide polymorphisms (SNP) of a number of genes have been associated with MDD. The zinc transporter-3 protein, encoded by the ZnT3 (SLC30A3) gene, maintains zinc-glutamate homeostasis at the glutamatergic synapse, a disruption of which increases risk of MDD. We hypothesise that variation in SLC30A3 (rs11126936)SNP increases risk of MDD. We recruited 300 MDD cases and 300 controls, matched in theratio of 1:1 by age, gender and ethnicity. PCR-restriction fragment length polymorphism analysis was used in DNA genotyping, validated by sequencing 10%of samples. Deviation from the Hardy-Weinberg equilibrium was tested using the chi-square test. Conditional logistic regression was used to estimate adjusted odds ratios, controlling for age, gender, ethnicity, occupation and family monthly income.Genotypes G/G and G/T showed two times greater odds of developing MDD compared to variant genotype T/T (OR=1.983, 95% CI=1.031-3.815; p=0.040 and OR=2.232, 95% CI=1.100-4.533; p=0.026 respectively). Carriers of genotypes G/G and G/T of the SNP rs11126936 in SLC30A3are associated with increased risk of MDD.
    Matched MeSH terms: Heterozygote
  2. Chew EGY, Liany H, Tan LCS, Au WL, Prakash KM, Annuar AA, et al.
    Neurobiol Aging, 2019 02;74:235.e1-235.e4.
    PMID: 30337193 DOI: 10.1016/j.neurobiolaging.2018.09.013
    Recent whole-exome sequencing studies in European patients with Parkinson's disease (PD) have identified potential risk variants across 33 novel PD candidate genes. We aim to determine if these reported candidate genes are similarly implicated in Asians by assessing common, rare, and novel nonsynonymous coding variants by sequencing all 33 genes in 198 Chinese samples and genotyping coding variants in an independent set of 9756 Chinese samples. We carried out further targeted sequencing of CD36 in an additional 576 Chinese and Korean samples. We found that only 8 of 43 reported risk variants were polymorphic in our Chinese samples. We identified several heterozygotes for rare loss-of-function mutations, including the reported CD36 p.Gln74Ter variant, in both cases and controls. We also observed 2 potential compound heterozygotes among PD cases for rare loss-of-function mutations in CD36 and SSPO. The other reported variants were common in East Asians and not associated with PD, completely absent, or only found in controls. Therefore, the 33 reported candidate genes and associated variants are unlikely to confer significant PD risk in the East Asian population.
    Matched MeSH terms: Heterozygote
  3. Kee SK, See VH, Chia P, Tan WC, Tien SL, Lim ST
    J Pediatr Genet, 2013 Mar;2(1):37-41.
    PMID: 27625838 DOI: 10.3233/PGE-13046
    The t(11;22) rearrangement is the most common recurrent familial reciprocal translocation in man. Heterozygote carriers are phenotypically normal but are at risk of subfertility in the male, miscarriages, and producing chromosomally unbalanced offspring. The unbalanced progeny usually results from an extra der(22) chromosome resulting from a 3:1 malsegregation. We present here a family with t(11;22). Of six siblings, three were found to be carriers following prenatal diagnosis of the proband fetus. Neither of the two married carrier siblings have a live born child. In keeping with the prevailing knowledge of the pregnancy outcomes of heterozygote carriers, between the siblings they had recurrent miscarriages, a fetus with a +der(22) chromosome, and other subfertility issues resulting in multiple failed in vitro fertilization cycles with preimplantation genetic diagnosis. However, unlike the siblings, their extended family comprising their heterozygote translocation mother, married aunts and an uncle had normal fertility and a lack of a history of miscarriages or an abnormal child. The differing outcomes may be related to the male partners having additional semen anomalies which may further exacerbate problems associated with the t(11;22). Because the t(11;22) rearrangement tends to run in families, it is recommended that chromosome studies are offered to family members of an affected relative as an option, and provide them with appropriate genetic counseling so that they will have the necessary information with regard to their risk for subfertility, miscarriages, and production of viable unbalanced offspring. Follow-up prenatal diagnosis should also be offered to affected expectant family members, especially after preimplantation genetic diagnosis.
    Matched MeSH terms: Heterozygote
  4. Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, et al.
    Sci Adv, 2018 04;4(4):eaaq0392.
    PMID: 29740610 DOI: 10.1126/sciadv.aaq0392
    Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome-wide and locally, and to detect runs of homozygosity potentially pertaining to positive selection in domestic donkeys. Finally, this new assembly allowed us to identify fine-scale chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation.
    Matched MeSH terms: Heterozygote
  5. Huang Y, Ting PY, Yao TM, Homma T, Brooks D, Katayama Rangel IA, et al.
    J Endocrinol, 2018 Nov 01.
    PMID: 30400034 DOI: 10.1530/JOE-18-0247
    Human risk allele carriers of Lysine-Specific Demethylase 1 (LSD1) and LSD1 deficient mice have salt sensitive hypertension for unclear reasons. We hypothesized that LSD1 deficiency causes dysregulation of aldosterone's response to salt intake resulting in increased cardiovascular risk factors [blood pressure and microalbumin]. Furthermore, we determined the effect of biological sex on these potential abnormalities. To test our hypotheses, LSD1 male and female heterozygote knockout (LSD1+/-) and wild type (WT) mice were assigned to two age groups: 18 weeks and 36 weeks. Plasma aldosterone levels and aldosterone production from zona glomerulosa cells studied ex vivo were greater in both male and female LSD1+/- mice consuming a liberal salt diet as compared to WT mice consuming the same diet. However, salt sensitive blood pressure elevation and increased microalbuminuria were only observed in male LSD1+/- mice. These data suggest that LSD1 interacts with aldosterone's secretory response to salt intake. Lack of LSD1 causes inappropriate aldosterone production on a liberal salt diet; males appear to be more sensitive to this aldosterone increase as males, but not females, develop salt sensitivity of blood pressure and increased microalbuminuria. The mechanism responsible for the cardiovascular protective effect in females is uncertain but may be related to estrogen modulating the effect of mineralocorticoid receptor activation.
    Matched MeSH terms: Heterozygote
  6. Li T, Pappas C, Le ST, Wang Q, Klinedinst BS, Larsen BA, et al.
    Neurobiol Aging, 2022 Jan;109:158-165.
    PMID: 34740077 DOI: 10.1016/j.neurobiolaging.2021.09.020
    The Apolipoprotein E ε4 (APOE ε4) haplotype is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The Translocase of Outer Mitochondrial Membrane-40 (TOMM40) gene maintains cellular bioenergetics, which is disrupted in AD. TOMM40 rs2075650 ('650) G versus A carriage is consistently related to neural and cognitive outcomes, but it is unclear if and how it interacts with APOE. We examined 21 orthogonal neural networks among 8,222 middle-aged to aged participants in the UK Biobank cohort. ANOVA and multiple linear regression tested main effects and interactions with APOE and TOMM40 '650 genotypes, and if age and sex acted as moderators. APOE ε4 was associated with less strength in multiple networks, while '650 G versus A carriage was related to more language comprehension network strength. In APOE ε4 carriers, '650 G-carriage led to less network strength with increasing age, while in non-G-carriers this was only seen in women but not men. TOMM40 may shift what happens to network activity in aging APOE ε4 carriers depending on sex.
    Matched MeSH terms: Heterozygote
  7. Usman MG, Rafii MY, Martini MY, Yusuff OA, Ismail MR, Miah G
    Cell Stress Chaperones, 2018 Mar;23(2):223-234.
    PMID: 28812232 DOI: 10.1007/s12192-017-0836-3
    Backcrossing together with simple sequence repeat marker strategy was adopted to improve popular Malaysian chilli Kulai (Capsicum annuum L.) for heat tolerance. The use of molecular markers in backcross breeding and selection contributes significantly to overcoming the main drawbacks such as increase linkage drag and time consumption, in the ancient manual breeding approach (conventional), and speeds up the genome recovery of the recurrent parent. The strategy was adopted to introgress heat shock protein gene(s) from AVPP0702 (C. annuum L.), which are heat-tolerant, into the genetic profile of Kulai, a popular high-yielding chilli but which is heat sensitive. The parents were grown on seed trays, and parental screening was carried out with 252 simple sequence repeat markers. The selected parents were crossed and backcrossed to generate F1 hybrids and backcross generations. Sixty-eight markers appeared to be polymorphic and were used to assess the backcross generation; BC1F1, BC2F1 and BC3F1. The average recipient allele of the selected four BC1F1 plants was 80.75% which were used to produce the BC2F1 generation. BC1-P7 was the best BC1F1 plant because it had the highest recovery at 83.40% and was positive to Hsp-linked markers (Hsp70-u2 and AGi42). After three successive generations of backcrossing, the average genome recovery of the recurrent parent in the selected plants in BC3F1 was 95.37%. Hsp gene expression analysis was carried out on BC1F1, BC2F1 and BC3F1 selected lines. The Hsp genes were found to be up-regulated when exposed to heat treatment. The pattern of Hsp expression in the backcross generations was similar to that of the donor parent. This confirms the successful introgression of a stress-responsive gene (Hsp) into a Kulai chilli pepper variety. Furthermore, the yield performance viz. plant height, number of fruits, fruit length and weight and total yield of the improved plant were similar with the recurrent parent except that the plant height was significantly lower than the Kulai (recurrent) parent.
    Matched MeSH terms: Heterozygote
  8. Hall HN, Bengani H, Hufnagel RB, Damante G, Ansari M, Marsh JA, et al.
    PLoS One, 2022;17(11):e0268149.
    PMID: 36413568 DOI: 10.1371/journal.pone.0268149
    Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism.
    Matched MeSH terms: Heterozygote
  9. Yatim NF, Rahim MA, Menon K, Al-Hassan FM, Ahmad R, Manocha AB, et al.
    Int J Mol Sci, 2014 May 19;15(5):8835-45.
    PMID: 24857915 DOI: 10.3390/ijms15058835
    Both α- and β-thalassaemia syndromes are public health problems in the multi-ethnic population of Malaysia. To molecularly characterise the α- and β-thalassaemia deletions and mutations among Malays from Penang, Gap-PCR and multiplexed amplification refractory mutation systems were used to study 13 α-thalassaemia determinants and 20 β-thalassaemia mutations in 28 and 40 unrelated Malays, respectively. Four α-thalassaemia deletions and mutations were demonstrated. --SEA deletion and αCSα accounted for more than 70% of the α-thalassaemia alleles. Out of the 20 β-thalassaemia alleles studied, nine different β-thalassaemia mutations were identified of which βE accounted for more than 40%. We concluded that the highest prevalence of (α- and β-thalassaemia alleles in the Malays from Penang are --SEA deletion and βE mutation, respectively.
    Matched MeSH terms: Heterozygote
  10. Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, et al.
    J Clin Oncol, 2022 May 10;40(14):1529-1541.
    PMID: 35077220 DOI: 10.1200/JCO.21.02112
    PURPOSE: To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management.

    METHODS: We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment.

    RESULTS: BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers.

    CONCLUSION: In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.

    Matched MeSH terms: Heterozygote
  11. Alauddin H, Kamarudin K, Loong TY, Azma RZ, Ithnin A, Jalil N, et al.
    Hemoglobin, 2018 Jul;42(4):247-251.
    PMID: 30623696 DOI: 10.1080/03630269.2018.1528985
    Nondeletional α-globin mutations are known to cause more serious clinical effects than deletional ones. A rare IVS-I-1 (G>A) (HBA2: c.95+1G>A) donor splice site mutation interferes with normal splicing of pre mRNA and results in activation of a cryptic splice site as well as a frameshift mutation. Hb Adana [HBA2: c.179G>A (or HBA1)] is a highly unstable variant hemoglobin (Hb) resulting from a mutation at codon 59 on the HBA2 or HBA1 gene, recognized to cause severe α-thalassemia (α-thal) syndromes. We report a unique case of compound heterozygosity for these two mutations in a 9-year-old boy who presented with a Hb level of 5.3 g/dL and hepatomegaly at the age of 15 months. He required regular blood transfusions in view of a Hb level of <7.0 g/dL and failure to thrive. He had thalassemic red cell indices and peripheral blood film. The Hb electrophoresis only showed a raised Hb F level (3.3%) and a pre run peak but the Hb H inclusion test was negative. His father had thalassemic red cell indices but a normal Hb level. His mother had almost normal Hb levels and red cell indices. Hb Adana involving the HBA2 gene was detected by mutiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in the proband and his father. DNA sequencing of the HBA2 gene confirmed the IVS-I-1 mutation in the proband and his mother. This case highlighted the unique interaction of the IVS-I-1 mutation with Hb Adana in a young Malay boy presenting with transfusion-dependent α-thal.
    Matched MeSH terms: Heterozygote
  12. Abdullah WA, Jamaluddin NB, Kham SK, Tan JA
    PMID: 9031421
    The spectrum of beta-thalassemia mutations in Malays in Singapore and Kelantan (Northeast Malaysia) was studied. Allele specific priming was used to determine the mutations in beta-carriers at -28, Codon 17, IVSI #1, IVSI #5, Codon 41-42 and IVSII #654 along the beta-globin gene. The most common structural hemoglobin variant in Southeast Asia, Hb E, was detected by DNA amplification with restriction enzyme (Mnl1) analysis. Direct genomic sequencing was carried out to detect the beta-mutations uncharacterized by allele-specific priming. The most prevalent beta-mutations in Singaporean Malays were IVSI #5 (45.83%) followed by Hb E (20.83%), codon 15 (12.5%) and IVSI #1 and IVSII #654 at 4.17% each. In contrast, the distribution of the beta-mutations in Kelantan Malays differed, with Hb E as the most common mutation (39.29%) followed by IVSI #5 (17.86%), codon 41-42 (14.29%), codon 19 (10.71%) and codon 17 (3.57%). The beta-mutations in Kelantan Malays follow closely the distribution of beta-mutations in Thais and Malays of Southern Thailand and Malays of West Malaysia. The AAC-->AGC base substitution in codon 19 has been detected only in these populations. The spectrum of beta-mutations in the Singaporean Malays is more similar to those reported in Indonesia with the beta-mutation at codon 15 (TGG-->TAG) present in both populations. The characterization of beta-mutations in Singaporean and Kelantan Malays will facilitate the establishment of effective prenatal diagnosis programs for beta-thalassemia major in this ethnic group.
    Matched MeSH terms: Heterozygote Detection
  13. Yap CK, Tan SG, Ismail A, Omar H
    Environ Int, 2004 Mar;30(1):39-46.
    PMID: 14664863
    It has been widely reported that heavy metal contamination in coastal waters can modify the allozyme profiles of marine organisms. Previous studies have recorded elevated metal concentrations in sediments and mussel tissues off Peninsular Malaysia. In the present study, horizontal starch gel electrophoresis was carried out to estimate the levels of allelic variation of the green-lipped mussel, Perna viridis, collected from one contaminated and three relatively uncontaminated sites off Peninsular Malaysia. Fourteen polymorphic loci were observed. In addition, the concentrations of cadmium, copper, lead, mercury and zinc were determined in the sediments and in the soft tissues of the mussels. Mussels from contaminated site, evidenced by high metal pollution indices (MPI) of the sediment and the mussel tissues, showed the highest percentage of polymorphic loci (78.6%), while those collected from the uncontaminated sites had lower MPI of the sediment and mussel tissue, and exhibited lower percentages of polymorphic loci (35.7-57.1%). The population from the contaminated site showed the highest excess of heterozygosity (0.289) when compared to that of the populations from the three uncontaminated sites (0.108-0.149). Allozyme frequencies at the phosphoglucomutase (PGM; E.C. 2.7.5.1) locus also differed between the contaminated and uncontaminated populations. Previous studies have shown that exposure to heavy metals can select or counter-select for particular alleles at this locus. The present results suggest that allozyme polymorphism in P. viridis is a potential biomonitoring tool for heavy metal contamination but further validation is required.
    Matched MeSH terms: Heterozygote
  14. Fix AG
    Am J Phys Anthropol, 1984 Oct;65(2):201-12.
    PMID: 6507610
    A Monte Carlo simulation based on the population structure of a small-scale human population, the Semai Senoi of Malaysia, has been developed to study the combined effects of group, kin, and individual selection. The population structure resembles D.S. Wilson's structured deme model in that local breeding populations (Semai settlements) are subdivided into trait groups (hamlets) that may be kin-structured and are not themselves demes. Additionally, settlement breeding populations are connected by two-dimensional stepping-stone migration approaching 30% per generation. Group and kin-structured group selection occur among hamlets the survivors of which then disperse to breed within the settlement population. Genetic drift is modeled by the process of hamlet formation; individual selection as a deterministic process, and stepping-stone migration as either random or kin-structured migrant groups. The mechanism for group selection is epidemics of infectious disease that can wipe out small hamlets particularly if most adults become sick and social life collapses. Genetic resistance to a disease is an individual attribute; however, hamlet groups with several resistant adults are less likely to disintegrate and experience high social mortality. A specific human gene, hemoglobin E, which confers resistance to malaria, is studied as an example of the process. The results of the simulations show that high genetic variance among hamlet groups may be generated by moderate degrees of kin-structuring. This strong microdifferentiation provides the potential for group selection. The effect of group selection in this case is rapid increase in gene frequencies among the total set of populations. In fact, group selection in concert with individual selection produced a faster rate of gene frequency increase among a set of 25 populations than the rate within a single unstructured population subject to deterministic individual selection. Such rapid evolution with plausible rates of extinction, individual selection, and migration and a population structure realistic in its general form, has implications for specific human polymorphisms such as hemoglobin variants and for the more general problem of the tempo of evolution as well.
    Matched MeSH terms: Heterozygote Detection
  15. Welch QB, Lie-Injo Luan Eng, Bolton JM
    Hum Hered, 1972;22(1):28-37.
    PMID: 4624781
    Matched MeSH terms: Heterozygote
  16. Azma RZ, Ainoon O, Hafiza A, Azlin I, Noor Farisah AR, Nor Hidayati S, et al.
    Malays J Pathol, 2014 Apr;36(1):27-32.
    PMID: 24763232 MyJurnal
    Alpha (Α) thalassaemia is the most common inherited disorder in Malaysia. The clinical severity is dependant on the number of Α genes involved. Full blood count (FBC) and haemoglobin (Hb) analysis using either gel electrophoresis, high performance liquid chromatography (HPLC) or capillary zone electrophoresis (CE) are unable to detect definitively alpha thalassaemia carriers. Definitive diagnosis of Α-thalassaemias requires molecular analysis and methods of detecting both common deletional and non-deletional molecular abnormailities are easily performed in any laboratory involved in molecular diagnostics. We carried out a retrospective analysis of 1623 cases referred to our laboratory in Universiti Kebangsaan Malaysia Medical Centre (UKMMC) for the diagnosis of Α-thalassaemia during the period October 2001 to December 2012. We examined the frequency of different types of alpha gene abnormalities and their haematologic features. Molecular diagnosis was made using a combination of multiplex polymerase reaction (PCR) and real time PCR to detect deletional and non-deletional alpha genes relevant to southeast Asian population. Genetic analysis confirmed the diagnosis of Α-thalassaemias in 736 cases. Majority of the cases were Chinese (53.1%) followed by Malays (44.2%), and Indians (2.7%). The most common gene abnormality was ΑΑ/--(SEA) (64.0%) followed by ΑΑ/-Α(3.7) (19.8%), -Α(3.7) /--(SEA) (6.9%), ΑΑ/ΑΑCS (3.0%), --(SEA)/--(SEA) (1.2%), -Α(3.7)/-Α(3.7) (1.1%), ΑΑ/-Α(4.2) (0.7%), -Α(4.2)/--(SEA (0.7%), -Α(3.7)/-Α(4.2) (0.5%), ΑΑ(CS)/-- SEA) (0.4%), ΑΑ(CS)/ΑΑ(Cd59) (0.4%), ΑΑ(CS)/ΑΑ(CS) (0.4%), -Α(3.7)/ΑΑ(Cd59) (0.3%), ΑΑ/ΑΑ(Cd59) (0.1%), ΑΑ(Cd59)/ ΑΑ(IVS I-1) (0.1%), -Α(3.7)/ΑΑ(CS) (0.1%) and --(SEA) /ΑΑ(Cd59) (0.1%). This data indicates that the molecular abnormalities of Α-thalassaemia in the Malaysian population is heterogenous. Although Α-gene deletion is the most common cause, non-deletional Α-gene abnormalities are not uncommon and at least 3 different mutations exist. Establishment of rapid and easy molecular techniques is important for definitive diagnosis of alpha thalassaemia, an important prerequisite for genetic counselling to prevent its deleterious complications.
    Matched MeSH terms: Heterozygote
  17. Naidu R, Har YC, Taib NA
    Onkologie, 2011;34(11):592-7.
    PMID: 22104155 DOI: 10.1159/000334060
    The present study aimed to evaluate the association between the E-Selectin Ser128Arg polymorphism and breast cancer risk and clinicopathological characteristics of the patients.
    Matched MeSH terms: Heterozygote
  18. Wee YC, Tan KL, Kuldip K, Tai KS, George E, Tan PC, et al.
    Community Genet, 2008;11(3):129-34.
    PMID: 18376108 DOI: 10.1159/000113874
    BACKGROUND/AIMS: Individuals with double heterozygosity for alpha- and beta-thalassaemia and heterozygous beta-thalassaemia show a similar haematological picture. Co-inheritance of alpha- and beta-thalassaemia in both partners may result in pregnancies with either Hb Bart's hydrops foetalis or beta-thalassaemia major, or pregnancies with both disorders.
    METHODS: The co-inheritance of alpha-thalassaemia in 322 beta-thalassaemia carriers in Malaysia was studied.
    RESULTS: The frequency of alpha-thalassaemia in the beta-thalassaemia carriers was 12.7% (41/322), with a carrier frequency of 7.8% for the SEA deletion, 3.7% for the -alpha(3.7) deletion, 0.9% for Hb Constant Spring and 0.3% for the -alpha(4.2) deletion.
    CONCLUSION: Double heterozygosity for alpha- and beta-thalassaemia was confirmed in 5 out of the 41 couples and the risk of the fatal condition Hb Bart's hydrops foetalis was confirmed in two of these couples. Detection of the Southeast Asian (SEA) deletion in the Malaysian Malays in this study confirms that Hb Bart's hydrops foetalis can occur in this ethnic group. Results of this study have provided new information on the frequency and different types of alpha-thalassaemia (--(SEA), -alpha(3.7) and -alpha(4.2) deletions, Hb Constant Spring) in Malaysian beta-thalassaemia carriers.
    Matched MeSH terms: Heterozygote
  19. Abdullah JM, Farizan A, Asmarina K, Zainuddin N, Ghazali MM, Jaafar H, et al.
    Asian J Surg, 2006 Oct;29(4):274-82.
    PMID: 17098662
    The pattern of allelic loss of heterozygosity (LOH) and PTEN mutations appear to be associated with the progression of gliomas leading to a decrement in the survival rate of patients. This present study was carried out to determine the LOH and PTEN mutational status in glioma patients and its association with patients' survival.
    Matched MeSH terms: Heterozygote
  20. Yenchitsomanus PT, Sawasdee N, Paemanee A, Keskanokwong T, Vasuvattakul S, Bejrachandra S, et al.
    J Hum Genet, 2003;48(9):451-456.
    PMID: 12938018 DOI: 10.1007/s10038-003-0059-6
    We have previously demonstrated that compound heterozygous (SAO/G701D) and homozygous (G701D/G701D) mutations of the anion exchanger 1 (AE1) gene, encoding erythroid and kidney AE1 proteins, cause autosomal recessive distal renal tubular acidosis (AR dRTA) in Thai patients. It is thus of interest to examine the prevalence of these mutations in the Thai population. The SAO and G701D mutations were examined in 844 individuals from north, northeast, central, and south Thailand. Other reported mutations including R602H, DeltaV850, and A858D were also examined in some groups of subjects. The SAO mutation was common in the southern Thai population; its heterozygote frequency was 7/206 and estimated allele frequency 1.70%. However, this mutation was not observed in populations of three other regions of Thailand. In contrast, the G701D mutation was not found in the southern population but was observed in the northern, northeastern, and central populations, with heterozygote frequencies of 1/216, 3/205, and 1/217, and estimated allele frequencies of 0.23%, 0.73%, and 0.23%, respectively. The higher allele frequency of the G701D mutation in the northeastern Thai population corresponds to our previous finding that all Thai patients with AR dRTA attributable to homozygous G701D mutation originate from this population. This suggests that the G701D allele that is observed in this region might arise in northeastern Thailand. The presence of patients with compound heterozygous SAO/G701D in southern Thailand and Malaysia and their apparently absence in northeastern Thailand indicate that the G701D allele may have migrated to the southern peninsular region where SAO is common, resulting in pathogenic allelic interaction.
    Matched MeSH terms: Heterozygote Detection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links