Displaying publications 81 - 100 of 782 in total

Abstract:
Sort:
  1. Ren X, Evangelista-Leite D, Wu T, Rajab TK, Moser PT, Kitano K, et al.
    Biomaterials, 2018 11;182:127-134.
    PMID: 30118980 DOI: 10.1016/j.biomaterials.2018.08.012
    Decellularized native extracellular matrix (ECM) biomaterials are widely used in tissue engineering and have reached clinical application as biomesh implants. To enhance their regenerative properties and postimplantation performance, ECM biomaterials could be functionalized via immobilization of bioactive molecules. To facilitate ECM functionalization, we developed a metabolic glycan labeling approach using physiologic pathways to covalently incorporate click-reactive azide ligands into the native ECM of a wide variety of rodent tissues and organs in vivo, and into the ECM of isolated rodent and porcine lungs cultured ex vivo. The incorporated azides within the ECM were preserved after decellularization and served as chemoselective ligands for subsequent bioconjugation via click chemistry. As proof of principle, we generated alkyne-modified heparin, immobilized it onto azide-incorporated acellular lungs, and demonstrated its bioactivity by Antithrombin III immobilization and Factor Xa inhibition. The herein reported metabolic glycan labeling approach represents a novel platform technology for manufacturing click-reactive native ECM biomaterials, thereby enabling efficient and chemoselective functionalization of these materials to facilitate tissue regeneration and repair.
    Matched MeSH terms: Lung/cytology; Lung/ultrastructure; Lung/chemistry
  2. Wan Ahmad WS, Zaki WM, Ahmad Fauzi MF
    Biomed Eng Online, 2015;14:20.
    PMID: 25889188 DOI: 10.1186/s12938-015-0014-8
    Unsupervised lung segmentation method is one of the mandatory processes in order to develop a Content Based Medical Image Retrieval System (CBMIRS) of CXR. The purpose of the study is to present a robust solution for lung segmentation of standard and mobile chest radiographs using fully automated unsupervised method.
    Matched MeSH terms: Lung/radiography*
  3. Major VJ, Chiew YS, Shaw GM, Chase JG
    Biomed Eng Online, 2018 Nov 12;17(1):169.
    PMID: 30419903 DOI: 10.1186/s12938-018-0599-9
    BACKGROUND: Mechanical ventilation is an essential therapy to support critically ill respiratory failure patients. Current standards of care consist of generalised approaches, such as the use of positive end expiratory pressure to inspired oxygen fraction (PEEP-FiO2) tables, which fail to account for the inter- and intra-patient variability between and within patients. The benefits of higher or lower tidal volume, PEEP, and other settings are highly debated and no consensus has been reached. Moreover, clinicians implicitly account for patient-specific factors such as disease condition and progression as they manually titrate ventilator settings. Hence, care is highly variable and potentially often non-optimal. These conditions create a situation that could benefit greatly from an engineered approach. The overall goal is a review of ventilation that is accessible to both clinicians and engineers, to bridge the divide between the two fields and enable collaboration to improve patient care and outcomes. This review does not take the form of a typical systematic review. Instead, it defines the standard terminology and introduces key clinical and biomedical measurements before introducing the key clinical studies and their influence in clinical practice which in turn flows into the needs and requirements around how biomedical engineering research can play a role in improving care. Given the significant clinical research to date and its impact on this complex area of care, this review thus provides a tutorial introduction around the review of the state of the art relevant to a biomedical engineering perspective.

    DISCUSSION: This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions.

    CONCLUSION: Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.

    Matched MeSH terms: Lung; Lung Injury/etiology
  4. Ramli MI, Hamzaid NA, Engkasan JP, Usman J
    Biomed Eng Online, 2023 May 22;22(1):50.
    PMID: 37217941 DOI: 10.1186/s12938-023-01103-0
    BACKGROUND: Over the decades, many publications have established respiratory muscle training (RMT) as an effective way in improving respiratory dysfunction in multiple populations. The aim of the paper is to determine the trend of research and multidisciplinary collaboration in publications related to RMT over the last 6 decades. The authors also sought to chart the advancement of RMT among people with spinal cord injury (SCI) over the last 60 years.

    METHODS: Bibliometric analysis was made, including the publications' profiles, citation analysis and research trends of the relevant literature over the last 60 years. Publications from all time frames were retrieved from Scopus database. A subgroup analysis of publications pertinent to people with SCI was also made.

    RESULTS: Research on RMT has been steadily increasing over the last 6 decades and across geographical locations. While medicine continues to dominate the research on RMT, this topic also continues to attract researchers and publications from other areas such as engineering, computer science and social science over the last 10 years. Research collaboration between authors in different backgrounds was observed since 2006. Source titles from non-medical backgrounds have also published articles pertinent to RMT. Among people with SCI, researchers utilised a wide range of technology from simple spirometers to electromyography in both intervention and outcome measures. With various types of interventions implemented, RMT generally improves pulmonary function and respiratory muscle strength among people with SCI.

    CONCLUSIONS: While research on RMT has been steadily increasing over the last 6 decades, more collaborations are encouraged in the future to produce more impactful and beneficial research on people who suffer from respiratory disorders.

    Matched MeSH terms: Lung
  5. Fathinul Fikri A, Lau W
    Biomed Imaging Interv J, 2010 10 01;6(4):e37.
    PMID: 21611073 DOI: 10.2349/biij.6.4.e37
    An incidental finding of an intense focus of (18)F-Fluorodeoxyglucose (FDG) pulmonary uptake on positron emission tomography (PET) without detectable lesions on computed tomography (CT) is highly suggestive of FDG microembolus. Its microscopic nature means it is undetectable on CT. It is an artefact attributable to (18)F-FDG-tracer contamination at the injection site. This paper reports a case of a 61 year-old lady with a past history of breast carcinoma, in whom follow-up PET/CT images demonstrated an incidental intense FDG pulmonary abnormality. A follow-up PET/CT seven months later demonstrated complete resolution of the abnormality.
    Matched MeSH terms: Lung Diseases
  6. Smith K
    Biomed Imaging Interv J, 2012 Jan;8(1):e2.
    PMID: 22970058 DOI: 10.2349/biij.8.1.e2
    A 69 year-old man presented with an incidental finding on radiograph of a lesion in the left upper lobe. CT indicated it was likely to be a neoplasm and CT-guided FNA was requested. The lesion was located medial to the scapula so a creative approach was utilised to gain access to the lesion. This study discusses the approach used and why it reduced patient risk compared to a more conventional procedure. The sample was positive for neoplasm and there were no complications arising from the procedure.
    Matched MeSH terms: Lung
  7. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    Biomed Pharmacother, 2014 Oct;68(8):1105-15.
    PMID: 25456851 DOI: 10.1016/j.biopha.2014.10.006
    The pure vitamin isomer, β-tocotrienol has the least abundance among the other vitamin E isomers that are present in numerous plants. Hence, it is very scarcely studied for its bioactivity. In this study, the antiproliferative effects and primary apoptotic mechanisms of β-tocotrienol on human lung adenocarcinoma A549 and glioblastoma U87MG cells were investigated. It was evidenced that β-tocotrienol had inhibited the growth of both A549 (GI50=1.38±0.334μM) and U87MG (GI50=2.53±0.604μM) cells at rather low concentrations. Cancer cells incubated with β-tocotrienol were also found to exhibit hallmarks of apoptotic morphologies including membrane blebbing, chromatin condensation and formation of apoptotic bodies. The apoptotic properties of β-tocotrienol in both A549 and U87MG cells were the results of its capability to induce significant (P<0.05) double-strand DNA breaks (DSBs) without involving single-strand DNA breaks (SSBs). β-Tocotrienol is said to induce activation of caspase-8 in both A549 and U87MG cells guided by no activation when caspase-8 inhibitor, z-IETD-fmk was added. Besides, disruption on the mitochondrial membrane permeability of the cells in a concentration- and time-dependent manner had occurred. The induction of apoptosis by β-tocotrienol in A549 and U87MG cells was confirmed to involve both the death-receptor mediated and mitochondria-dependent apoptotic pathways. These findings could potentiate the palm oil derived β-tocotrienol to serve as a new anticancer agent for treating human lung and brain cancers.
    Matched MeSH terms: Lung Neoplasms/drug therapy; Lung Neoplasms/enzymology*
  8. Monika, Sharma A, Suthar SK, Aggarwal V, Lee HB, Sharma M
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3814-8.
    PMID: 25027934 DOI: 10.1016/j.bmcl.2014.06.068
    The new series of pentacyclic triterpenoids reduced lantadene A (3), B (4), and 22β-hydroxy-3-oxo-olean-12-en-28-oic acid (5) analogs were synthesized and tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead analog (11) showed sub-micromolar activity against TNF-α induced activation of NF-κB and exhibited inhibition of IKKβ in a single-digit micromolar dose. At the same time, 11 showed promising cytotoxicity against A549 lung cancer cells with IC50 of 0.98 μM. The Western blot analysis further showed that the suppression of NF-κB activity by the lead analog 11 was due to the inhibition of IκBα degradation, a natural inhibitor of NF-κB. The physicochemical evaluation demonstrated that the lead analog 11 was stable in the simulated gastric fluid of pH 2, while hydrolyzed at a relatively higher rate in the human blood plasma to release the active parent moieties. Molecular docking analysis showed that 11 was hydrogen bonded with the Arg-31 and Gln-110 residues of the IKKβ.
    Matched MeSH terms: Lung Neoplasms/drug therapy*; Lung Neoplasms/metabolism; Lung Neoplasms/pathology
  9. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2019 Sep 15;141:111434.
    PMID: 31238281 DOI: 10.1016/j.bios.2019.111434
    The pragmatic outcome of a lung cancer diagnosis is closely interrelated in reducing the number of fatal death caused by the world's top cancerous disease. Regardless of the advancement made in understanding lung tumor, and its multimodal treatment, in general the percentage of survival remain low. Late diagnosis of a cancerous cell in patients is the major hurdle for the above circumstances. In the new era of a lung cancer diagnosis with low cost, portable and non-invasive clinical sampling, nanotechnology is at its inflection point where current researches focus on the implementation of biosensor conjugated nanomaterials for the generation of the ideal sensing. The present review encloses the superiority of nanomaterials from zero to three-dimensional nanostructures in its discrete and nanocomposites nanotopography on sensing lung cancer biomarkers. Recent researches conducted on definitive nanomaterials and nanocomposites at multiple dimension with distinctive physiochemical property were focused to subside the cases associated with lung cancer through the development of novel biosensors. The hurdles encountered in the recent research and future preference with prognostic clinical lung cancer diagnosis using multidimensional nanomaterials and its composites are presented.
    Matched MeSH terms: Lung Neoplasms/diagnosis*
  10. Lin LP, Tan MTT
    Biosens Bioelectron, 2023 Oct 01;237:115492.
    PMID: 37421797 DOI: 10.1016/j.bios.2023.115492
    Lung cancer remains the leading cause of cancer-related death. In addition to chest X-rays and computerised tomography, the detection of cancer biomarkers serves as an emerging diagnostic tool for lung cancer. This review explores biomarkers including the rat sarcoma gene, the tumour protein 53 gene, the epidermal growth factor receptor, the neuron-specific enolase, the cytokeratin-19 fragment 21-1 and carcinoembryonic antigen as potential indicators of lung cancer. Biosensors, which utilise various transduction techniques, present a promising solution for the detection of lung cancer biomarkers. Therefore, this review also explores the working principles and recent implementations of transducers in the detection of lung cancer biomarkers. The transducing techniques explored include optical techniques, electrochemical techniques and mass-based techniques for detecting biomarkers and cancer-related volatile organic compounds. Graphene has outstanding properties in terms of charge transfer, surface area, thermal conductivity and optical characteristics, on top of allowing easy incorporation of other nanomaterials. Exploiting the collective merits of both graphene and biosensor is an emerging trend, as evidenced by the growing number of studies on graphene-based biosensors for the detection of lung cancer biomarkers. This work provides a comprehensive review of these studies, including information on modification schemes, nanomaterials, amplification strategies, real sample applications, and sensor performance. The paper concludes with a discussion of the challenges and future outlook of lung cancer biosensors, including scalable graphene synthesis, multi-biomarker detection, portability, miniaturisation, financial support, and commercialisation.
    Matched MeSH terms: Lung
  11. Abulaiti A, Salai A, Sun X, Yibulayin W, Gao Y, Gopinath SCB, et al.
    PMID: 33576539 DOI: 10.1002/bab.2122
    Non-small cell lung cancer (NSCLC) incited by epidermal growth factor receptor (EGFR) mutation makes up ∼85% of lung cancer diagnosed and death cases worldwide. The presented study introduced an alternative approach in detecting EGFR mutation using nano-silica integrated with polydimethylsiloxane (PDMS) polymer on interdigitated electrode (IDE) sensor. A 400 μm gap-sized aluminum IDE was modified with nano-polymer layer, which was made up of silica nanoparticles and PDMS polymer. IDE and PDMS-coated IDE (PDMS/IDE) were imaged using electron microscopes that reveals its smooth and ideal sensor morphology. The nano-silica-integrated PDMS/IDE surface was immobilized with EGFR probe and target to specify the lung cancer detection. The sensor specificity was justified through the insignificant current readouts with one-base mismatch and noncomplementary targets. The sensitivity of nano-silica-integrated PDMS/IDE was examined with mutant target spiked in human serum, where the resulting current affirms the detection of EGFR mutation. Based on the slope of the calibration curve, the sensitivity of nano-silica-integrated PDMS/IDE was 2.24E-9 A M-1 . The sensor recognizes EGFR mutation lowest at 1 aM complementary mutant target; however, the detection limit obtained based on 3σ calculation is 10 aM with regression value of 0.97.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung; Lung Neoplasms
  12. Mohamad N, Jayalakshmi P, Rhodes A, Liam CK, Tan JL, Yousoof S, et al.
    Br J Biomed Sci, 2017 Oct;74(4):176-180.
    PMID: 28705139 DOI: 10.1080/09674845.2017.1331520
    BACKGROUND: Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death. Approximately 2-16% of NSCLC patients with wild-type epidermal growth factor receptor (EGFR) harbour anaplastic lymphoma kinase (ALK) mutations. Both EGFR and ALK mutations occur most commonly in Asian patients with NSCLC. As targeted therapy is available for NSCLC patients with these mutations, it is important to establish reliable assays and testing strategies to identify those most likely to benefit from this therapy.

    MATERIALS AND METHODS: Patients diagnosed with adenocarcinoma of the lung between 2010 and 2014 were tested for EGFR mutations. Of these, 92 cases were identified as EGFR wild type and suitable candidates for ALK testing utilising immunohistochemistry and the rabbit monoclonal antibody D5F3. The reliability of the IHC was confirmed by validating the results against those achieved by fluorescence in situ hybridisation (FISH) to detect ALK gene rearrangements.

    RESULTS: Twelve (13%) cases were positive for ALK expression using immunohistochemistry. Of the 18 evaluable cases tested by FISH, there was 100% agreement with respect to ALK rearrangement/ALK expression between the assays, with 11 cases ALK negative and 7 cases ALK positive by both assays. ALK tumour expression was significantly more common in female compared to male patients (29.6% vs. 6.2%, P 

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung; Lung Neoplasms
  13. Abd Aziz A, Abdullah AF, Mahmud A
    Br J Hosp Med (Lond), 2007 Nov;68(11):616-7.
    PMID: 18087856 DOI: 10.12968/hmed.2007.68.11.27686
    Matched MeSH terms: Lung/radiography; Lung Abscess/chemically induced*; Lung Abscess/drug therapy; Lung Abscess/radiography
  14. Lim HH, Domala Z, Joginder S, Lee SH, Lim CS, Abu Bakar CM
    Br J Ind Med, 1984 Nov;41(4):445-9.
    PMID: 6498108 DOI: 10.1136/oem.41.4.445
    A study was carried out to determine the health effects of rice husk dust in Malaysian rice millers. The study population consisted of 122 male Malay workers from three rice mills, with 42 controls of similar age, sex, ethnic group, and agricultural work background. Interviews using standardised questionnaires, physical examination, total and differential white cell counts, chest radiographs, and lung function tests were performed on each of the millers and the controls. Environmental dust monitoring was also carried out in the three rice mills. Clinical, haematological, and radiological findings suggest that a distinct clinical syndrome seems to be associated with exposure to rice husk dust. The manifestations of this "rice millers' syndrome" include acute and chronic irritant effects affecting the eyes, skin, and upper respiratory tract; allergic responses such as nasal catarrh, tightness of chest, asthma, and eosinophilia; and radiological opacities in the chest, probably representing early silicosis or extrinsic allergic alveolitis.
    Matched MeSH terms: Lung/radiography; Lung Diseases/etiology; Lung Diseases/radiography
  15. Staples CA, Brown MJ, Bai TR, Chan NH
    Can Assoc Radiol J, 1996 Apr;47(2):136-9.
    PMID: 8612087
    Matched MeSH terms: Lung Diseases/ethnology; Lung Diseases/pathology
  16. Khajotia R, Raman S
    Can Fam Physician, 2012 Jul;58(7):757-60.
    PMID: 22859639
    Matched MeSH terms: Lung Neoplasms/complications; Lung Neoplasms/diagnosis*
  17. Chen Y, Tang WY, Tong X, Ji H
    Cancer Commun (Lond), 2019 10 01;39(1):53.
    PMID: 31570104 DOI: 10.1186/s40880-019-0402-8
    Despite the tremendous efforts for improving therapeutics of lung cancer patients, its prognosis remains disappointing. This can be largely attributed to the lack of comprehensive understanding of drug resistance leading to insufficient development of effective therapeutics in clinic. Based on the current progresses of lung cancer research, we classify drug resistance mechanisms into three different levels: molecular, cellular and pathological level. All these three levels have significantly contributed to the acquisition and evolution of drug resistance in clinic. Our understanding on drug resistance mechanisms has begun to change the way of clinical practice and improve patient prognosis. In this review, we focus on discussing the pathological changes linking to drug resistance as this has been largely overlooked in the past decades.
    Matched MeSH terms: Lung Neoplasms/drug therapy*; Lung Neoplasms/pathology*; Small Cell Lung Carcinoma/drug therapy; Small Cell Lung Carcinoma/pathology
  18. Rodrigues P, Patel SA, Harewood L, Olan I, Vojtasova E, Syafruddin SE, et al.
    Cancer Discov, 2018 Jul;8(7):850-865.
    PMID: 29875134 DOI: 10.1158/2159-8290.CD-17-1211
    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states.Significance: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 850-65. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.
    Matched MeSH terms: Lung Neoplasms/secondary
  19. De Rienzo A, Archer MA, Yeap BY, Dao N, Sciaranghella D, Sideris AC, et al.
    Cancer Res, 2016 Jan 15;76(2):319-28.
    PMID: 26554828 DOI: 10.1158/0008-5472.CAN-15-0751
    Malignant pleural mesothelioma (MPM) is an aggressive cancer that occurs more frequently in men, but is associated with longer survival in women. Insight into the survival advantage of female patients may advance the molecular understanding of MPM and identify therapeutic interventions that will improve the prognosis for all MPM patients. In this study, we performed whole-genome sequencing of tumor specimens from 10 MPM patients and matched control samples to identify potential driver mutations underlying MPM. We identified molecular differences associated with gender and histology. Specifically, single-nucleotide variants of BAP1 were observed in 21% of cases, with lower mutation rates observed in sarcomatoid MPM (P < 0.001). Chromosome 22q loss was more frequently associated with the epithelioid than that nonepitheliod histology (P = 0.037), whereas CDKN2A deletions occurred more frequently in nonepithelioid subtypes among men (P = 0.021) and were correlated with shorter overall survival for the entire cohort (P = 0.002) and for men (P = 0.012). Furthermore, women were more likely to harbor TP53 mutations (P = 0.004). Novel mutations were found in genes associated with the integrin-linked kinase pathway, including MYH9 and RHOA. Moreover, expression levels of BAP1, MYH9, and RHOA were significantly higher in nonepithelioid tumors, and were associated with significant reduction in survival of the entire cohort and across gender subgroups. Collectively, our findings indicate that diverse mechanisms highly related to gender and histology appear to drive MPM.
    Matched MeSH terms: Lung Neoplasms/genetics*; Lung Neoplasms/pathology
  20. Zhang Y, Xu W, Guo H, Zhang Y, He Y, Lee SH, et al.
    Cancer Res, 2017 Apr 17.
    PMID: 28416482 DOI: 10.1158/0008-5472.CAN-16-1633
    Cancer stem-like cells (CSC) are thought to drive tumor initiation, metastasis, relapse and therapeutic resistance, but their specific pathogenic characters in many cancers including non-small cell lung cancer (NSCLC) have yet to be well defined. Here we develop findings that the growth factor HGF promotes CSC sphere formation in NSCLC cell populations. In patient-derived sphere-forming assays (PD-SFA) with HGF, CD49f and CD104 were defined as novel markers of lung CSC (LCSC). In particular, we isolated a subpopulation of CD166(+)CD49f(hi)CD104(-)Lin(-) LCSC present in all human specimens of NSCLC examined, regardless of their histological subtypes or genetic driver mutations. This specific cell population was tumorigenic and capable of self-renewal, giving rise to tumor spheres in vitro and orthotopic lung tumors in immune-compromised mice. Mechanistic investigations established that NOTCH1 was preferentially expressed in this cell subpopulation and required for self-renewal via the transcription factor HES1. Through a distinct HES1-independent pathway, NOTCH1 also protected LCSCs from cisplatin-induced cell death. Notably, treatment with a γ-secretase inhibitor that blunts NOTCH1 function ablated self-renewing LCSC activity and restored platinum sensitivity in vitro and in vivo Overall, our results define the pathogenic characters of a cancer stem-like subpopulation in lung cancer, the targeting of which may relieve platinum resistance in this disease.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung; Lung Neoplasms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links