Displaying publications 81 - 100 of 307 in total

Abstract:
Sort:
  1. Fahad Ahmad A, Aziz SHA, Abbas Z, Mohammad Abdalhadi D, Khamis AM, Aliyu US
    Polymers (Basel), 2020 Aug 26;12(9).
    PMID: 32858790 DOI: 10.3390/polym12091919
    This article describes attenuation and absorption measurements using the microstrip transmission line technique connected with a microwave vector network analyzer (Agilent 8750B). The magnitudes of the reflection (S11) and transmission (S21) coefficients obtained from the microstrip transmission line were used to determine the attenuation and absorption of oil palm empty fruit bunch/polylactic acid (OPEFB/PLA) composites in a frequency range between 0.20 GHz and 12 GHz at room temperature. The main structure of semi-flexible substrates (OPEFF/PLA) was fabricated using different fiber loading content extracted from oil palm empty fruit bunch (OPEFB) trees hosted in polylactic acid (PLA) using the Brabender blending machine, which ensured mixture homogeneity. The commercial software package, Computer Simulation Technology Microwave Studio (CSTMWS), was used to investigate the microstrip line technique performance by simulating and determine the S11 and S21 for microwave substrate materials. Results showed that the materials' transmission, reflection, attenuation, and absorption properties could be controlled by changing the percentage of OPEFB filler in the composites. The highest absorption loss was calculated for the highest percentage of filler (70%) OPEFB at 12 GHz to be 0.763 dB, while the lowest absorption loss was calculated for the lowest percentage of filler 30% OPEFB at 12 GHz to be 0.407 dB. Finally, the simulated and measured results were in excellent agreement, but the environmental conditions slightly altered the results. From the results it is observed that the value of the dielectric constant (εr') and loss factor (εr″) is higher for the OPEFB/PLA composites with a higher content of OPEFB filler. The dielectric constant increased from 2.746 dB to 3.486 dB, while the loss factor increased from 0.090 dB to 0.5941 dB at the highest percentage of 70% OPEFB filler. The dielectric properties obtained from the open-ended coaxial probe were required as input to FEM to calculate the S11 and S21 of the samples.
    Matched MeSH terms: Microwaves
  2. Mensah EE, Abbas Z, Azis RS, Ibrahim NA, Khamis AM
    Polymers (Basel), 2019 May 24;11(5).
    PMID: 31137695 DOI: 10.3390/polym11050918
    Recycled hematite (α-Fe2O3) nanoparticles with enhanced complex permittivity properties have been incorporated as a filler in a polycaprolactone (PCL) matrix reinforced with oil palm empty fruit bunch (OPEFB) fiber for microwave absorption applications. The complex permittivity values were improved by reducing the particle sizes to the nano scale via high-energy ball milling for 12 h. A total of 5-20 wt.% recycled α-Fe2O3/OPEFB/PCL nanocomposites were examined for their complex permittivity and microwave absorption properties via the open ended coaxial (OEC) technique and the transmission/reflection line measurement using a microstrip connected to a two-port vector network analyzer. The microstructural analysis of the samples included X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). At 1 GHz, the real (ε') and imaginary (ε″) parts of complex permittivity of recycled α-Fe2O3 particles, respectively, increased from 7.88 to 12.75 and 0.14 to 0.40 when the particle size was reduced from 1.73 μm to 16.2 nm. A minimum reflection loss of -24.2 dB was achieved by the 20 wt.% nanocomposite at 2.4 GHz. Recycled α-Fe2O3 nanoparticles are effective fillers for microwave absorbing polymer-based composites in 1-4 GHz range applications.
    Matched MeSH terms: Microwaves
  3. Faruque MR, Hossain MI, Misran N, Singh M, Islam MT
    PLoS One, 2015;10(11):e0142663.
    PMID: 26599584 DOI: 10.1371/journal.pone.0142663
    A metamaterial-embedded planar inverted-F antenna (PIFA) is proposed in this study for cellular phone applications. A dual-band PIFA is designed to operate both GSM 900 MHz and DCS 1800 MHz. The ground plane of a conventional PIFA is modified using a planar one-dimensional metamaterial array. The investigation is performed using the Finite Integration Technique (FIT) of CST Microwave Studio. The performance of the developed antenna was measured in an anechoic chamber. The specific absorption rate (SAR) values are calculated considering two different holding positions: cheek and tilt. The SAR values are measured using COMOSAR measurement system. Good agreement is observed between the simulated and measured data. The results indicate that the proposed metamaterial-embedded antenna produces significantly lower SAR in the human head compared to the conventional PIFA. Moreover, the modified antenna substrate leads to slight improvement of the antenna performances.
    Matched MeSH terms: Microwaves
  4. Uthirajoo E, Ramiah H, Kanesan J, Reza AW
    PLoS One, 2014;9(7):e101862.
    PMID: 25033049 DOI: 10.1371/journal.pone.0101862
    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.
    Matched MeSH terms: Microwaves
  5. Ahmad AF, Abbas Z, Obaiys SJ, Ibrahim N, Hashim M, Khaleel H
    PLoS One, 2015;10(10):e0140505.
    PMID: 26474301 DOI: 10.1371/journal.pone.0140505
    Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications.
    Matched MeSH terms: Microwaves*
  6. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
    Matched MeSH terms: Microwaves*
  7. Ahamed E, Hasan MM, Faruque MRI, Mansor MFB, Abdullah S, Islam MT
    PLoS One, 2018;13(6):e0199150.
    PMID: 29924859 DOI: 10.1371/journal.pone.0199150
    In this paper, we introduce a new compact left-handed tunable metamaterial structure, inspired by a joint T-D shape geometry on a flexible NiAl2O4 substrate. The designed metamaterial exhibits an extra-large negative refractive index bandwidth of 6.34 GHz, with an operating frequency range from 4 to 18 GHz. We demonstrate the effects of substrate material thickness on the effective properties of metamaterial using two substrate materials: 1) flame retardant 4 and 2) flexible nickel aluminate. A finite integration technique based on the Computer Simulation Technology Microwave Studio electromagnetic simulator was used for our design, simulation, and investigation. A finite element method based on an HFSS (High Frequency Structure Simulator) electromagnetic simulator is also used to simulate results, perform verifications, and compare the measured results. The simulated resonance peaks occurred at 6.42 GHz (C-band), 9.32 GHz (X-band), and 16.90 GHz (Ku-band), while the measured resonance peaks occurred at 6.60 GHz (C-band), 9.16 GHz (X-band) and 17.28 GHz (Ku-band). The metamaterial structure exhibited biaxial tunable properties by changing the electromagnetic wave propagation in the y and z directions and the left-handed characteristics at 11.35 GHz and 13.50 GHz.
    Matched MeSH terms: Microwaves
  8. Alahnomi RA, Zakaria Z, Ruslan E, Ab Rashid SR, Mohd Bahar AA, Shaaban A
    PLoS One, 2017;12(9):e0185122.
    PMID: 28934301 DOI: 10.1371/journal.pone.0185122
    A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).
    Matched MeSH terms: Microwaves*
  9. Gopalan T, Muhamad MR, Wai Hoe VC, Hassandarvish P
    PLoS One, 2024;19(2):e0296871.
    PMID: 38319932 DOI: 10.1371/journal.pone.0296871
    The Coronavirus Disease 2019 (COVID-19) pandemic has induced a critical supply of personal protective equipment (PPE) especially N95 respirators. Utilizing respirator decontamination procedures to reduce the pathogen load of a contaminated N95 respirator can be a viable solution for reuse purposes. In this study, the efficiency of a novel hybrid respirator decontamination method of ultraviolet germicidal irradiation (UVGI) which utilizes ultraviolet-C (UV-C) rays coupled with microwave-generated steam (MGS) against feline coronavirus (FCoV) was evaluated. The contaminated 3M 1860 respirator pieces were treated with three treatments (UVGI-only, MGS-only, and Hybrid-UVGI + MGS) with variable time. The virucidal activity was evaluated using the TCID50 method. The comparison of decontamination efficiency of the treatments indicated that the hybrid method achieved at least a pathogen log reduction of 4 logs, faster than MGS and UVGI. These data recommend that the proposed hybrid decontamination system is more effective comparatively in achieving pathogen log reduction of 4 logs.
    Matched MeSH terms: Microwaves
  10. Olalere OA, Gan CY, Akintomiwa OE, Adeyi O, Adeyi A
    Phytochem Anal, 2021 Sep;32(5):850-858.
    PMID: 33583076 DOI: 10.1002/pca.3030
    INTRODUCTION: The quality characteristics and stability of phenolic by-products from Cola nitida wastes are critical factors for drug formulation and food nutraceutical applications.

    OBJECTIVES: In this study, the effect of electromagnetic-based microwave-reflux extraction on the total phenolic content, antioxidant capacity, morphological characteristics, physisorption and chromatographic phenolic profiles were successfully investigated. These physicochemical analyses are often employed in the standardisation of dried herbal and food nutraceutical products.

    MATERIAL AND METHODS: In this study, the electromagnetic-based extraction process was optimised using the Box-Behnken design. The oleoresin bio-products were subsequently characterised to determine the total phenolic content, morphological and microstructural degradation. These analyses were conducted to elucidate the effect of the microwave heating on the C. nitida pod powder.

    RESULTS: From the predicted response, the optimal percentage yield was achieved at 26.20% under 5.39 min of irradiation time, 440 W microwave power and oven temperature of 55°C. Moreover, the rapid estimation of the phenolic content and antioxidant capacity were recorded at 124.84 ± 0.064 mg gallic acid equivalent (GAE)/g dry weight (d.w.) and 6.93 ± 0.34 μg/mL, respectively. The physicochemical characterisation results from the Fourier-transform infrared spectroscopy, field emission scanning electron microscopy and physisorption analyses showed remarkable changes in the micro-surface area (13.66%) characteristics.

    CONCLUSION: The recorded optimal conditions established a basis for future scale-up of microwave extraction parameters with a potential for maximum yield. The physiochemical characterisation revealed the functional characteristics of C. nitida and their tolerance to microwave heating.

    Matched MeSH terms: Microwaves*
  11. Supardi, N. F., Mohd Taib, N. H., Abu Amat, N. H., Yusoff, M. N. S.
    MyJurnal
    Wi-Fi is a wireless communication technology that uses specific electromagnetic frequencies. The increasing use of Wi-Fi has raised public concerns about the impact of electromagnetic radiation on the environment and human health. Since the exposure level of the electromagnetic field (EMF) radiation differs between different locations, it is important to measure the strength of the EMF at various locations under observation. This study aimed to obtain specific values related to the radiofrequency and microwave EMF which is described by four specific parameters, that are 1) the frequency of the wave, 2) the electric field strength E, 3) the magnetic field strength H, and 4) the power density S. This study was carried out at the first floor area of Hamdan Tahir Library, Universiti Sains Malaysia Health Campus. Mapping of Wi-Fi signal and measurement of Wi-Fi radiation level was performed at four specific locations, that are Laptop zone 1, Laptop zone 2, Computer lab, and Cozy corner. The average radiation level was compared with the ICNIRP standard limit for public user. It was observed that the Wi-Fi signal was highest in Laptop zone 2 followed by Laptop zone 1 which displayed a moderate signal strength. Whereas moderate but lower signal level was detected in Computer lab zone and Cozy corner. The electric and magnetic fields as well as power density were found highest in Laptop zone 1, followed by Laptop zone 2, Cozy corner, and Computer lab. Comparison with standard ICNIRP limit showed that the radiation level is still far below the ICNIRP limit, which is only 2% of exposure level. To conclude, Laptop zone 2 exhibited the strongest Wi-Fi signal whereas Laptop zone 1 displayed the highest radiation level. However, the strength of the electric and magnetic fields as well as power density is still far below the ICNIRP limit.
    Matched MeSH terms: Microwaves
  12. Wong TW, Nor Khaizan A
    Pharm Res, 2013 Jan;30(1):90-103.
    PMID: 22890987 DOI: 10.1007/s11095-012-0852-z
    PURPOSE: To investigate mechanism of microwave enhancing drug permeation transdermally through its action on skin.

    METHODS: Hydrophilic pectin-sulphanilamide films, with or without oleic acid (OA), were subjected to drug release and skin permeation studies. The skins were untreated or microwave-treated, and characterized by infrared spectroscopy, Raman spectroscopy, thermal, electron microscopy and histology techniques.

    RESULTS: Skin treatment by microwave at 2450 MHz for 5 min promoted drug permeation from OA-free film without incurring skin damage. Skin treatment by microwave followed by film loaded with drug and OA resulted in permeation of all drug molecules that were released from film. Microwave exerted spacing of lipid architecture of stratum corneum into structureless domains which was unattainable by OA. It allowed OA to permeate stratum corneum and accumulate in dermis at a greater ease, and synergistically inducing lipid/keratin fluidization at hydrophobic C-H and hydrophilic O-H, N-H, C-O, C=O, C-N regimes of skin, and promoting drug permeation.

    CONCLUSION: The microwave technology is evidently feasible for use in promotion of drug permeation across the skin barrier. It represents a new approach in transdermal drug delivery.

    Matched MeSH terms: Microwaves*
  13. Anuar NK, Wong TW, Taib MN
    Pharm Dev Technol, 2012 Jan-Feb;17(1):110-7.
    PMID: 20958167 DOI: 10.3109/10837450.2010.522584
    The effects of microwave on drug release properties of pectin films carrying sulfanilamide (SN-P), sulfathiazole (ST-P) and sulfamerazine (SM-P) of high to low aqueous solubilities were investigated. These films were prepared by solvent evaporation technique and treated by microwave at 80 W for 5-40 min. Their profiles of drug dissolution, drug content, matrix interaction and matrix crystallinity were determined by drug dissolution testing, drug content assay, differential scanning calorimetry, X-ray diffractometry and scanning electron microscopy techniques. Microwave induced an increase in matrix amorphousness but lower drug release propensity with a greater retardation extent in SN-P films, following a rise in strength of matrix interaction. A gain in amorphous structure does not necessarily increase the drug release of film. Microwave can possibly retard drug release of pectin film carrying water-soluble drug through modulating its state of matrix interaction.
    Matched MeSH terms: Microwaves
  14. Kaida Khalid, W. Mohd. Daud W. Yusoff, Jumiah Hassan
    MyJurnal
    Dielectric properties of natural rubber Hevea brasiliensis latex were measured at frequencies 0.2 to 20 GHz, at temperatures of 2, 15, 25, 35, and 50oC and around 30-98% moisture content. Measurements were done using open-ended coaxial line sensor and automated network analyzer. As expected, results showed that dielectric constant increased with increasing moisture. From 0.2 to 2.6 GHz, the losses were governed by conductive losses but for frequencies greater than 2.6 GHz, these were mainly due to dipolar losses. The former is due to conducting phases in hevea latex, while the latter is mainly governed by the orientation of water molecules. The results were analyzed at 2.6, 10, and 18 GHz, respectively. These were then compared with the values predicted by the dielectric mixture equations recommended by Weiner, Bruggeman and Kraszewski. All the measured values were found to be within the Weiner’s boundaries and close to the upper limit of Weiner’s model. It is also close to the predicted values of Bruggeman’s model with a/b = 0.1. All the models including Kraszewski are suitable for predicting the dielectric properties of hevea latex for frequencies 2.6 to 18 GHz, moisture content 30 to 98% and temperatures 2 to 50oC.
    Matched MeSH terms: Microwaves
  15. Yusuf, Y., Juoi, J.M., Rosli, Z.M., Kwan, W.L., Mahamud, Z.
    MyJurnal
    Titanium alloy (e.g. Ti-6Al-4V) has an excellent combination of properties. However in many cases,
    the application is limited because of the poor wear property. In this work, a surface modification
    (plasma nitriding) is carried out to improve the surface properties of Ti-6Al-4V, as a treatment prior to a hardcoating deposition, leading to a duplex coating system. This is an effort to improve the surface and near surface property of Ti-6Al-4V. Plasma nitriding is performed utilizing microwave plasma method in 25% Ar- 75% N2 atmosphere at temperatures of 600°C and 700°C for different processing times (1, 3 and 5 hours). The phase and microstructure of plasma nitrided substrate were characterized by using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The plasma nitrided Ti-6Al-4V properties (surface roughness, surface hardness and case depth) were determined using profilometer and microhardness, respectively. Results obtained showed a significant increase on the surface hardness of Ti-6Al-4V. This is due to the formation of TiN and Ti2N phases in the form of compound layer. Besides, it shows that the diffusion of nitrogen into the Ti-6Al-4V substrate produces case depth up to 130 µm and this contributes to the improvement of the near surface hardness due to the changes in the microstructures. It was also found that the surface hardness and surface roughness increased with the increases in the process temperature and times.
    Matched MeSH terms: Microwaves
  16. Mohamed Hasnain Isa, Shamsul Rahman Mohamed Kutty, Sri Rahayu Mohd Hussin, Nurhidayati Mat Daud, Amirhossein Malakahmad
    MyJurnal
    The presence of heavy metals in aquatic systems has become a serious problem. Heavy metals can haveadverse effects on the environment as well as on human health. As a result, much attention has beengiven to new technologies for removal of heavy metal ions from contaminated waters. In this study,Microwave Incinerated Rice Husk Ash (MIRHA), a locally available agricultural waste, was used for theremoval of Cd (as a representative heavy metal) from synthetic wastewater by batch adsorption process.The effects of pH, initial metal concentration, and contact time on Cd removal efficiency were studied.pH 4 was found to be the optimum. The removal efficiency was found to be correlated with the initialmetal concentration and contact time between adsorbent and adsorbate. Cd adsorption kinetics followedthe pseudo-second-order model and implied chemisorption. The adsorption equilibrium of Cd can bewell described by the Freundlich isotherm model.
    Matched MeSH terms: Microwaves
  17. Saberioon, M.M., Mardan, M., Nordin, L., Mohd Sood, A.
    MyJurnal
    Melaleuca cajuputi and Acacia auriculiformis trees are major sources of nectar and pollen for Apis dorsata and the colonies are a major source of honey to the rural poor, honey hunters. Honey is a supplementary income to many of these people (including school children) in the Marang district, Terengganu. In this study, Marang area with 270 square kilometers was chosen as pilot study area in Terengganu state for mapping M. cajuputi and A. auriculiformis as two dominant species in low land secondary forest in Terengganu state.To inventory and produce land use map of Melaleuca forest in Marang area, in this study SPOT-5 satellite image in multispectral mode with 10 meter resolution which is acquired in 2007 as optical satellite was utilized. Most images from optical satellites have some null data from ground because of clouds and shadow of clouds. To solve this problem, Hue, Saturation and value (HSV) and Principal Component Analysis (PCA) were used as fusion techniques to replace null data with microwave data which taken from Radarsat-1 image in C-band with 25 meter resolution image. Accordingly, fusion technique which was used in this research not only was a technique to improve information but also caused the accuracy increasing than land use map by just only SPOT-5 image. Also between two different fusion techniques, PCA shows the better result than HSV as two different fusion techniques.
    Matched MeSH terms: Microwaves
  18. Lau, F.F., Taip, F.S.
    MyJurnal
    An experimental study was performed to determine the drying characteristics of dried papaya using different drying methods. They were dried using several methods, such as sun drying, solar drying, oven drying, and microwave drying. The effects of different operating conditions on physical quality attributes were investigated. The papaya were cut into different thicknesses and cooked in sugar syrup with different sugar concentration for 24 hours. Three different temperature settings were used in oven and microwave drying. The drying curve and drying rate of each method, temperature, sample
    thickness and sugar concentration were studied. The drying times were found as in 6-15 minutes, 5 to 11 h, 10 to 18 h, and 14 to 23 h for the microwave, oven, sun and solar drying, respectively. The drying time increased with the increase of sample thickness and sugar concentration, as well as with the decrease of the drying temperature. In this study, quality attributes like colours and textural property of dried papaya were explored. Among the various methods of the drying characteristics
    of papaya halwa, oven drying was preferred with the optimum sample in 5 mm thickness and at the air temperature of 70ºC as it saved up to 40% of the drying time as compared to other methods, except microwave, and produced acceptable physical quality of product.
    Matched MeSH terms: Microwaves
  19. Sim, C.K., Abdullah, K., Mat Jafri, M.Z., Lim, H.S.
    MyJurnal
    Microwave Remote sensing data have been widely used in land cover and land use classification. The objective of this research paper is to investigate the feasibility of the multi-polarized ALOS-PALSAR data for land cover mapping. This paper presents the methodology and preliminary result including data acquisitions, data processing and data analysis. Standard supervised classification techniques such as the maximum likelihood, minimum distance-to-mean, and parallelepiped were applied to the ALOS-PALSAR images in the land cover mapping analysis. The PALSAR data training areas were chosen based on the information obtained from
    optical satellite imagery. The best supervise classifier was selected based on the highest overall accuracy and
    kappa coefficient. This study indicated that the land cover of Butterworth, Malaysia can be mapped accurately
    using ALOS PALSAR data.
    Matched MeSH terms: Microwaves
  20. Virk NA, Rehman A, Abbasi MA, Siddiqui SZ, Ashraf A, Lateef M, et al.
    Pak J Pharm Sci, 2018 Nov;31(6 (Supplementary):2645-2654.
    PMID: 30587474
    Microwave and conventional techniques were employed to synthesize a novel array of compounds 7a-g with 1,2,4-triazole and piperidine rings having great biological importance. The microwave assisted method has a better operational scope with respect to time and yield comparative to the conventional method. 1H-NMR, 13C-NMR and IR techniques were employed to justify the structure of synthesized compounds. The antioxidant, butyrylcholinesterase inhibition and urease inhibition potential of every synthesized compound was evaluated. Every member of the synthesized series was found potent against mentioned activities. Compound 7g was the most active anti-urease agent having IC50 (μM) value 16.5±0.09 even better than the thiourea with an IC50(μM) value of 24.3±0.24. The better urease inhibition potential of 7g was also elaborated and explained by docking and bovine serum albumin (BSA) binding studies.
    Matched MeSH terms: Microwaves*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links