Displaying publications 81 - 100 of 636 in total

Abstract:
Sort:
  1. Mohammed Modawe Alshik Edris N, Sulaiman Y
    Ecotoxicol Environ Saf, 2020 Oct 15;203:111026.
    PMID: 32888594 DOI: 10.1016/j.ecoenv.2020.111026
    The detection of phenolic compounds, i.e. resorcinol (RC) catechol (CC) and hydroquinone (HQ) are important due to their extremely hazardous impact and poor environmental degradation. In this work, a novel and sensitive composite of electrochemically reduced graphene oxide-poly(Procion Red MX-5B)/gold nanoparticles modified glassy carbon electrode (GCE/ERGO-poly(PR)/AuNPs) was assembled for voltammetric detection of benzenediol isomers (RC, CC, and HQ). The nanocomposite displayed high peak currents towards the oxidation of RC, HQ, and CC compared to non-modified GCE. The peak-to-peak separations were 0.44 and 0.10 V for RC-CC and CC-HQ, respectively. The limit of detections were 53, 53, and 79 nM for HQ, CC, and RC with sensitivities of 4.61, 4.38, and 0.56 μA/μM (S/N = 3), respectively. The nanocomposite displayed adequate reproducibility, besides good stability and acceptable recoveries for wastewater and cosmetic samples analyses.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  2. Dalila NR, Arshad MKM, Gopinath SCB, Nuzaihan MNM, Fathil MFM
    Mikrochim Acta, 2020 10 05;187(11):588.
    PMID: 33015730 DOI: 10.1007/s00604-020-04562-7
    Nanofabricated gold nanoparticles (Au-NPs) on MoS2 nanosheets (Au-NPs/MoS2) in back-gated field-effect transistor (BG-FET) are presented, which acts as an efficient semiconductor device for detecting a low concentration of C-reactive protein (C-RP). The decorated nanomaterials lead to an enhanced electron conduction layer on a 100-μm-sized transducing channel. The sensing surface was characterized by Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), atomic force microscopy (AFM), scanning electron microscopy (SEM), and high-power microscopy (HPM). The BG-FET device exhibits an excellent limit of detection of 8.38 fg/mL and a sensitivity of 176 nA/g·mL-1. The current study with Au-NPs/MoS2 BG-FET displays a new potential biosensing technology; especially for integration into complementary metal oxide (CMOS) technology for hand-held future device application.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  3. Rasheed M, Jawaid M, Parveez B, Zuriyati A, Khan A
    Int J Biol Macromol, 2020 Oct 01;160:183-191.
    PMID: 32454108 DOI: 10.1016/j.ijbiomac.2020.05.170
    This work investigates the extraction of cellulose nanocrystals (CNC) from bamboo fibre as an alternative approach to utilize the waste bamboo fibre. In this study, bamboo fibre was subjected to acid hydrolysis for efficient isolation of CNC from bamboo fibre. The extracted CNC's were morphologically, characterized via Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The energy Dispersive X-rays (EDX) provided the elemental composition of the prepared CNC's and X-ray diffractometer (XRD) exhibited their crystallinity. The physiochemical analysis was done via Fourier Transform Infrared (FTIR); and their thermal analysis was revealed by Thermogravimetric Analysis (TGA) and Differential scanning calorimetry (DSC). As from their morphological investigations, rod like structures of CNC's were observed under SEM analysis with higher carbon content as demonstrated by EDX, while needle shaped CNC's were observed from TEM and AFM studies. Acid hydrolysis for 45 min resulted into higher degree of crystallinity and higher yield of CNC's about 86.96% and 22% respectively. Owing to higher quality of CNC's obtained as a result of efficient and modified techniques, these can find potential usage in nanocomposites for biomedical and food packaging application.
    Matched MeSH terms: Nanoparticles/chemistry*
  4. Ramiah SK, Atta Awad E, Hemly NIM, Ebrahimi M, Joshua O, Jamshed M, et al.
    J Anim Sci, 2020 Oct 01;98(10).
    PMID: 32936879 DOI: 10.1093/jas/skaa300
    This study was conducted to explore the effect of the zinc oxide nanoparticles (ZnONPs) supplement on the regulatory appetite and heat stress (HS) genes in broiler chickens raised under high or normal ambient temperatures. In this study, 240 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 48 battery cages. From day 1, these 48 cages were randomly subjected to four different treatment strategies: Control (wherein, their basal diet included 60 mg/kg of ZnO), ZNONPs 40 (wherein basal diet included 40 mg/kg of ZnONPs), ZnONPs 60 (basal diet included 60 mg/kg of ZnONPs), and ZnONPs 100 (basal diet included 100 mg/kg of ZnONPs). Thereafter, from day 22 to 42, the chickens from each dietary treatment group were subjected to different temperature stresses either normal (23 ± 1 °C constant) or HS (34 ± 1 °C for 6 h/d), which divided them into eight different treatment groups. Our findings revealed that dietary ZnONPs altered the gene expression of cholecystokinin (ileum), heat stress proteins (HSP) 70 (jejunum and ileum), and HSP 90 (duodenum, jejunum, and ileum). The gene expression of ghrelin was affected by the interaction between the ZnONPs concentration and temperature in the duodenum and stomach. More studies are required to elucidate its complex physiological and biochemical functions of the regulation of gene expression within the intestine in heat-stressed broiler chickens.
    Matched MeSH terms: Nanoparticles/chemistry*
  5. Zulkifli NI, Muhamad M, Mohamad Zain NN, Tan WN, Yahaya N, Bustami Y, et al.
    Molecules, 2020 Sep 22;25(18).
    PMID: 32971740 DOI: 10.3390/molecules25184332
    A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5-30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  6. Li Z, Gopinath SCB, Lakshmipriya T, Anbu P, Perumal V, Wang X
    Biomed Microdevices, 2020 09 17;22(4):67.
    PMID: 32940771 DOI: 10.1007/s10544-020-00522-3
    Nanoscale materials have been employed in the past 2 decades in applications such as biosensing, therapeutics and medical diagnostics due to their beneficial optoelectronic properties. In recent years, silver nanoparticles (AgNPs) have gained attention due to their higher plasmon excitation efficiency than gold nanoparticles, as proved by sharper and stronger plasmon resonance peaks. The current work is focused on utilizing self-assembled DNA-AgNPs on microdevices for the detection of gynecological cancers. Human papilloma virus (HPV) mostly spreads through sexual transmittance and can cause various gynecological cancers, including cervical, ovarian and endometrial cancers. In particular, oncogene E7 from the HPV strain 16 (HPV-16 E7) is responsible for causing these cancers. In this research, the target sequence of HPV-16 E7 was detected by an AgNP-conjugated capture probe on a dielectrode sensor. The detection limit was in the range between 10 and 100 aM (by 3σ estimation). The sensitivity of the AgNP-conjugated probe was 10 aM and similar to the sensitivity of gold nanoparticle conjugation sensors, and the mismatched control DNA failed to detect the target, proving selective HPV detection. Morphological assessments on the AgNPs and the sensing surfaces by high-resolution microscopy revealed the surface arrangement. This sensing platform can be expanded to develop sensors for the detection various clinically relevant targets.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  7. Musalli AH, Talukdar PD, Roy P, Kumar P, Wong TW
    Carbohydr Polym, 2020 Sep 15;244:116488.
    PMID: 32536388 DOI: 10.1016/j.carbpol.2020.116488
    This study examined the effects of folate environment of oligochitosan nanoparticles on their cellular internalization profiles in human melanoma cells. The conjugates and nanoparticles of oligochitosan-folate, oligochitosan-carboxymethyl-5-fluorouracil, and oligochitosan-folate-carboxymethyl-5-fluorouracil were synthesized by carbodiimide chemistry and prepared by nanospray drying technique respectively. The cellular internalization profiles of oligochitosan-folate nanoparticles against the human malignant melanoma cell line (SKMEL-28) were evaluated using confocal scanning electron microscopy technique through fluorescence labelling and endocytic inhibition, as a function of nanoparticulate folate content, size, polydispersity index, zeta potential, shape, surface roughness and folate population density. The cytotoxicity and cell cycle arrest characteristics of oligochitosan-folate-carboxymethyl-5-fluorouracil nanoparticles, prepared with an optimal folate content that promoted cellular internalization, were evaluated against the oligochitosan-folate and oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles. The oligochitosan-folate conjugate nanoparticles were endocytosed by melanoma cells via caveolae- and lipid raft-mediated endocytic pathways following them binding to the cell surface folate receptor. Nanoparticles that were larger and with higher folic acid contents and zeta potentials exhibited a higher degree of cellular internalization. Excessive conjugation of nanoparticles with folate resulted in a high nanoparticulate density of folate which hindered nanoparticles-cell interaction via folate receptor binding and reduced cellular internalization of nanoparticles. Conjugating oligochitosan with 20 %w/w folate was favorable for cellular uptake as supported by in silico models. Conjugating of oligochitosan nanoparticles with carboxymethyl-5-fluorouracil and 20 %w/w of folate promoted nanoparticles-folate receptor binding, cellular internalization and cancer cell death via cell cycle arrest at S phase at a lower drug dose than oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles and neat carboxymethyl-5-fluorouracil.
    Matched MeSH terms: Nanoparticles/chemistry*
  8. Haque ST, Islam RA, Gan SH, Chowdhury EH
    Int J Mol Sci, 2020 Sep 14;21(18).
    PMID: 32937817 DOI: 10.3390/ijms21186721
    Background: The limitations of conventional treatment modalities in cancer, especially in breast cancer, facilitated the necessity for developing a safer drug delivery system (DDS). Inorganic nano-carriers based on calcium phosphates such as hydroxyapatite (HA) and carbonate apatite (CA) have gained attention due to their biocompatibility, reduced toxicity, and improved therapeutic efficacy. Methods: In this study, the potential of goose bone ash (GBA), a natural derivative of HA or CA, was exploited as a pH-responsive carrier to successfully deliver doxorubicin (DOX), an anthracycline drug into breast cancer cells (e.g., MCF-7 and MDA-MB-231 cells). GBA in either pristine form or in suspension was characterized in terms of size, morphology, functional groups, cellular internalization, cytotoxicity, pH-responsive drug (DOX) release, and protein corona analysis. Results: The pH-responsive drug release study demonstrated the prompt release of DOX from GBA through its disintegration in acidic pH (5.5-6.5), which mimics the pH of the endosomal and lysosomal compartments as well as the stability of GBA in physiological pH (pH 7.5). The result of DOX binding with GBA indicated an increment in binding affinity with increasing concentrations of DOX. Cell viability and cytotoxicity analysis showed no innate toxicity of GBA particles. Both qualitative and quantitative cellular uptake analysis in both cell lines displayed an enhanced cellular internalization of DOX-loaded GBA compared to free DOX molecules. The protein corona spontaneously formed on the surface of GBA particles exhibited its affinity toward transport proteins, structural proteins, and a few other selective proteins. The adsorption of transport proteins could extend the circulation half-life in biological environment and increase the accumulation of the drug-loaded NPs through the enhanced permeability and retention (EPR) effect at the tumor site. Conclusion: These findings highlight the potential of GBA as a DDS to successfully deliver therapeutics into breast cancer cells.
    Matched MeSH terms: Nanoparticles/chemistry*
  9. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  10. Buskaran K, Hussein MZ, Mohd Moklas MA, Fakurazi S
    Int J Mol Sci, 2020 Aug 16;21(16).
    PMID: 32824281 DOI: 10.3390/ijms21165874
    The development of nanocomposites has swiftly changed the horizon of drug delivery systems in defining a new platform. Major understanding of the interaction of nanocomposites with cells and how the interaction influences intracellular uptake is an important aspect to study in order to ensure successful utilisation of the nanocomposites. Studies have suggested that the nanocomposites' ability to permeate into biological cells is attributable to their well-defined physicochemical properties with nanoscale size, which is relevant to the nanoscale components of biology and cellular organelles. The functionalized graphene oxide coated with polyethylene glycol, loaded with protocatechuic acid and folic acid (GOP-PCA-FA) nanocomposite intracellular uptake was analysed using transmission electron microscope. The accumulation of fluorescent-labelled nanocomposites in the HepG2 cell was also analysed using a fluorescent microscope. In vitro cellular uptake showed that there was uptake of the drug from 24 h into the cells and the release study using fluorescently tagged nanocomposite demonstrated that release and accumulation were observed at 24 h and 48 h. Moreover, the migration ability of tumor cells is a key step in tumor progression which was observed 48 h after treatment. The GOP serves as a potential nanocarrier system which is capable of improving the therapeutic efficacy of drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated drugs. Nonetheless, it is essential to analyse the translocation of our newly developed GOP-PCA-FA, and its efficiency for drug delivery, effective cellular uptake, and abundant intracellular accumulation would be compromised by possible untoward side effects.
    Matched MeSH terms: Nanoparticles/chemistry
  11. Kian LK, Saba N, Jawaid M, Alothman OY, Fouad H
    Carbohydr Polym, 2020 Aug 01;241:116423.
    PMID: 32507177 DOI: 10.1016/j.carbpol.2020.116423
    Olive fiber is a sustainable material as well as alternative biomass for extraction of nanocrystalline cellulose (NCC), which has been widely applied in various industries. In the present study, ONC-I, ONC-II, and ONC-III were extracted from olive stem fiber at different hydrolysis reaction times of 30 min, 45 min, and 60 min, respectively. The nanoparticle size was found gradually reducing from ONC-I (11.35 nm width, 168.28 nm length) to ONC-III (6.92 nm width, 124.16 nm length) due to the disintegration of cellulose fibrils. ONC-II and ONC-III possessed highly pure cellulose compartments and enhanced crystals structure. This study also showed that rigidity increased from ONC-I to ONC-II. ONC-III showed the highest crystallinity of 83.1 %, endowing it as a potentially reliable load-bearing agent. Moreover, ONC-III exhibited highest stable heat resistance among the chemically-isolated nanocellulose. We concluded that olive NCC could be promising materials for a variety of industrial applications in various fields.
    Matched MeSH terms: Nanoparticles/chemistry*
  12. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Nanoparticles/chemistry*; Metal Nanoparticles/chemistry
  13. Yew YP, Shameli K, Mohamad SE, Lee KX, Teow SY
    Int J Mol Sci, 2020 Jul 09;21(14).
    PMID: 32659939 DOI: 10.3390/ijms21144851
    Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50-0.734 mg/mL) compared to the unloaded NCs (IC50-1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry
  14. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jul;112:110925.
    PMID: 32409075 DOI: 10.1016/j.msec.2020.110925
    Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  15. Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P
    Drug Discov Today, 2020 07;25(7):1174-1188.
    PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013
    Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
    Matched MeSH terms: Nanoparticles/chemistry*
  16. Al-Doaiss A, Jarrar Q, Moshawih S
    IET Nanobiotechnol, 2020 Jul;14(5):405-411.
    PMID: 32691743 DOI: 10.1049/iet-nbt.2020.0039
    Silver nanoparticles (Ag NPs) are invested in various sectors and are becoming more persistent in our ambient environment with potential risk on our health and the ecosystems. The current study aims to investigate the histological, histochemical and ultrastructural hepatic changes that might be induced by 10 nm silver nanomaterials. Male mice (BALB/C) were exposed for 35 injections of daily dose of 10 nm Ag NPs (2 mg/kg). Liver tissues were subjected to examination by light and electron microscopy for histological, histochemical and ultrastructural alterations. Exposure to Ag NPs induced Kupffer cells hyperplasia, sinusoidal dilatation, apoptosis, ground glass hepatocytes appearance, nuclear changes, inflammatory cells infiltration, hepatocytes degeneration and necrosis. In addition, 10 nm Ag NPs induced histochemical alterations mainly glycogen depletion with no hemosiderin precipitation. Moreover, these nanomaterials exhibited ultrastructure alterations including mitochondrial swelling and cristolysis, cytoplasmic vacuolation, apoptosis, multilammellar myelin figures formation and endoplasmic destruction and reduction. The findings revealed that Ag NPs can induce alterations in the hepatic tissues, the chemical components of the hepatocytes and in the ultrastructure of the liver. One may also conclude that small size Ag NPs, which are increasingly used in human products could cause various toxigenic responses to all hepatic tissue components.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  17. Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB
    Int J Mol Sci, 2020 Jun 19;21(12).
    PMID: 32575390 DOI: 10.3390/ijms21124357
    The synergistic anticancer effect of docetaxel (DTX) and curcumin (CCM) has emerged as an attractive therapeutic candidate for lung cancer treatment. However, the lack of optimal bioavailability because of high toxicity, low stability, and poor solubility has limited their clinical success. Given this, an aerosolized nanoemulsion system for pulmonary delivery is recommended to mitigate these drawbacks. In this study, DTX- and CCM-loaded nanoemulsions were optimized using the D-optimal mixture experimental design (MED). The effect of nanoemulsion compositions towards two response variables, namely, particle size and aerosol size, was studied. The optimized formulations for both DTX- and CCM-loaded nanoemulsions were determined, and their physicochemical and aerodynamic properties were evaluated as well. The MED models achieved the optimum formulation for DTX- and CCM-loaded nanoemulsions containing a 6.0 wt% mixture of palm kernel oil ester (PKOE) and safflower seed oils (1:1), 2.5 wt% of lecithin, 2.0 wt% mixture of Tween 85 and Span 85 (9:1), and 2.5 wt% of glycerol in the aqueous phase. The actual values of the optimized formulations were in line with the predicted values obtained from the MED, and they exhibited desirable attributes of physicochemical and aerodynamic properties for inhalation therapy. Thus, the optimized formulations have potential use as a drug delivery system for a pulmonary application.
    Matched MeSH terms: Nanoparticles/chemistry*
  18. Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Khoshnava SM, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jun;111:110812.
    PMID: 32279830 DOI: 10.1016/j.msec.2020.110812
    Magnesium (Mg) alloys present great potential for the development of orthopedic implants, whereas, their high degradation rate and poor antibacterial performance have restricted orthopedic applications. In this work, PLLA/GO-AgNP (poly-L-lactic acid/graphene oxide- silver nanoparticle) with different concentration of GO-AgNPs were deposited on Mg alloy via electrospinning method for enhancement of corrosion resistance and antibacterial performance. The result revealed that incorporation of GO into PLLA fibrous considerably slowed down the degradation rate of Mg alloy substrate and reduced the H2 release rate from the substrate. Also, co-incorporation of GO and AgNPs into PLLA fibrous resulted in substantial escalate in compressive strength after immersion in simulated body fluid (SBF). Antibacterial activity test exhibited that Mg alloy and neat PLLA fibrous presented minimal inhibition area toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In contrast, using PLLA/GO-AgNPs fibrous improved antibacterial performance against both bacteria. Cytocompatibility results indicated that PLLA/GO-AgNPs fibrous with a low amount of GO-AgNPs enhanced cell proliferation and growth while high co-incorporation of GO-AgNPs showed a negative effect on cell proliferation. Taken together, PLLA/1GO-AgNPs fibrous coating shows suitable corrosion resistance, cytocompatibility, and antibacterial function for use in orthopedic applications.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  19. Saleem S, Iqbal A, Hasnain S
    Trop Biomed, 2020 Jun 01;37(2):482-488.
    PMID: 33612817
    Bacterial mediated Silver nanoparticles is considered as an emerging Ecofriendly approach to eradicate human pathogens. This paper aims to provide the biological approach for the synthesis of silver nanoparticles from indigenously isolated bacteria. This study will be beneficial to control the nosocomial infections triggered by MRSA (Methicillin-resistant Staphylococcus aureus). The current study is the extracellular synthesis of silver nanoparticles by using the cell free filtrate of bacterial strains isolated from the soil. The optimization study was also carried out to obtain the maximum production of silver nanoparticles. Nanoparticles were confirmed and characterized by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM) having the plasmon resonance peak between 420-450nm with 10-60nm in size range and most were spherical in shape. Synthesized silver nanoparticles showed a potential antibacterial activity against MRSA (Methicillin Resistant Staphylococcus aureus) in-vitro study. This is the green approach for the production of AgNPs, as there was no previous work done on the synthesis of silver nanoparticles by bacteria in this region of Southern Punjab, Pakistan and these nanoparticles can be used to treat nosocomial infection. These silver nanoparticles can be used in effective disease management as antimicrobial agent.
    Matched MeSH terms: Metal Nanoparticles/chemistry
  20. Uppachai P, Srijaranai S, Poosittisak S, Md Isa I, Mukdasai S
    Molecules, 2020 May 29;25(11).
    PMID: 32485804 DOI: 10.3390/molecules25112528
    A new supramolecular electrochemical sensor for highly sensitive detection of dopamine (DA) was fabricated based on supramolecular assemblies of mixed two surfactants, tetra-butylammonium bromide (TBABr) and sodium dodecyl sulphate (SDS), on the electrodeposition of gold nanoparticles on graphene oxide modified on glassy carbon electrode (AuNPs/GO/GCE). Self-assembled mixed surfactants (TBABr/SDS) were added into the solution to increase the sensitivity for the detection of DA. All electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The supramolecular electrochemical sensor (TBABr/SDS⋅⋅⋅AuNPs/GO/GCE) showed excellent electrocatalytic activity toward the oxidation of DA. Under the optimum conditions, the concentration of DA was obtained in the range from 0.02 µM to 1.00 µM, with a detection limit of 0.01 µM (3s/b). The results displayed that TBABr/SDS⋅⋅⋅AuNPs/GO/GCE exhibited excellent performance, good sensitivity, and reproducibility. In addition, the proposed supramolecular electrochemical sensor was successfully applied to determine DA in human serum samples with satisfactory recoveries (97.26% to 104.21%).
    Matched MeSH terms: Metal Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links