Displaying publications 81 - 100 of 490 in total

Abstract:
Sort:
  1. Lim WH, Yap YK, Chong WY, Ahmad H
    Sensors (Basel), 2014;14(12):24329-37.
    PMID: 25526358 DOI: 10.3390/s141224329
    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.
    Matched MeSH terms: Physical Phenomena
  2. Idris AC, Saad MR, Zare-Behtash H, Kontis K
    Sensors (Basel), 2014;14(4):6606-32.
    PMID: 24721773 DOI: 10.3390/s140406606
    Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP) has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.
    Matched MeSH terms: Physical Phenomena
  3. Marufuzzaman M, Reaz MB, Rahman LF, Chang TG
    ScientificWorldJournal, 2014;2014:709635.
    PMID: 24574913 DOI: 10.1155/2014/709635
    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era.
    Matched MeSH terms: Physical Phenomena
  4. Najib N, Bachok N, Arifin NM, Ishak A
    Sci Rep, 2014;4:4178.
    PMID: 24569547 DOI: 10.1038/srep04178
    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.
    Matched MeSH terms: Physical Phenomena
  5. Ebrahimiasl S, Zakaria A
    Sensors (Basel), 2014;14(2):2549-60.
    PMID: 24509767 DOI: 10.3390/s140202549
    A nanocrystalline SnO2 thin film was synthesized by a chemical bath method. The parameters affecting the energy band gap and surface morphology of the deposited SnO2 thin film were optimized using a semi-empirical method. Four parameters, including deposition time, pH, bath temperature and tin chloride (SnCl2·2H2O) concentration were optimized by a factorial method. The factorial used a Taguchi OA (TOA) design method to estimate certain interactions and obtain the actual responses. Statistical evidences in analysis of variance including high F-value (4,112.2 and 20.27), very low P-value (<0.012 and 0.0478), non-significant lack of fit, the determination coefficient (R2 equal to 0.978 and 0.977) and the adequate precision (170.96 and 12.57) validated the suggested model. The optima of the suggested model were verified in the laboratory and results were quite close to the predicted values, indicating that the model successfully simulated the optimum conditions of SnO2 thin film synthesis.
    Matched MeSH terms: Physical Phenomena
  6. Wang G, Pu X
    Sains Malaysiana, 2014;43:807-812.
    A distinct element approach has been introduced for simulating the plugging performance of granular lost circulation materials (LCM) in a fracture. This approach solves the fully coupled fracture walls, fluid and particles system in an interactive environment. The effects of the particle shape, size distribution and concentration on the fracture-plugging performance of the granular LCM have been investigated using the three-dimensional particle flow code (PFC3D). The simulated results showed that the irregular granular LCM could plug a fracture width larger than the sieving granulation by single-particle bridging type. The particle size distribution (PSD) of LCM dominates the plugging depth and efficiency in a fracture and there exists an optimum concentration for maximum effect of LCM additives.
    Matched MeSH terms: Physical Phenomena
  7. Nasima Akter, Shahidan Radiman, Faizal Mohamed, Nazaruddin Ramly, Putra EGR, Rini AS
    Sains Malaysiana, 2014;43:203-209.
    Kappa-carrageenan is one form of necessary hydrocolloid. Hydrocolloids are macromolecular materials, which swell upon absorption of water; in some cases, forming a stiff gel in the presence of additives. This property is very important to suspend nanocarriers into gel network, which provide them long time stability at a varying temperature range. In this work, we prepared microemulsion and trapped these particles inside the kappa-carrageenan gel network. The microemulsion was composed of sodium N-lauroylsarcosinate hydrate (SNLS), oleic acid and deionized water. The purpose of this study was to immobilize them into the gel network, giving longer shelf life at a range of temperatures for oral drug delivery. Morphological properties were investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectra. The TEM results showed that microemulsions are trapped in the gel network, and the diameter of the microemulsions are below 100 nm, which is comparable with the DLS results. The important functional groups of kappa-carrageenan and microemulsion were shown from the FTIR result of the complex microemulsion gel. These results confirmed the interaction between SNLS based microemulsion and kappa- carrageenan gel.
    Matched MeSH terms: Physical Phenomena
  8. Zaidon A, Kim G, Bakar E, Rasmina H
    Sains Malaysiana, 2014;43:775-782.
    The aim of the study was to develop response surface methodology (RSM) models for polymer loading, density, dimensional stability, strength and stiffness of compressed wood of sesenduk (Endospermum diadenum) treated with phenol formaldehyde (PF). Central composite design (CCD) using RSM with three processing parameters was studied in their specific ranges: PF concentration (PC) from 24-40%, pre-curing time (PCT), 3-9 h and compression ratio (CR), 70-90%. The experimental design was analysed and interpreted using the Design Expert Software (Stat Ease version 8) and the responses of 3d plots were built using the same software. Quadratic models in terms of PC, PCT and CR were developed for polymer loading, density, reduction in water absorption and modulus of rupture in static bending. Multiple linear equations were developed for anti-swelling efficiency and modulus of elasticity. The experimental values were in good agreement with predicted ones and the models were highly significant with correlation coefficients between 0.626 and 0.926. PC and CR had significant effects on the responses. The range of PCT used did not significantly affect the responses. It was also found that the improvement of properties ranged from moderately to highly correlated with the polymer loading in the compreg wood.
    Matched MeSH terms: Physical Phenomena
  9. Ro?ca AV, Rosca NC, Pop I
    Sains Malaysiana, 2014;43:1239-1247.
    The paper reconsiders the problem of the mixed convection boundary layer flow near the lower stagnation point of a horizontal circular cylinder with a second order slip velocity model and a constant surface heat flux studied recently by RoKa et al. (2013). The ordinary (similarity) differential equations are solved numerically using the function bvp4c from Matlab for different values of the governing parameters. It is found that the similarity equations have two branches, upper and lower branch solutions, in a certain range of the mixed convection parameters. A stability analysis has been performed to show that the upper branch solutions are stable and physically realizable, while the lower branch solutions are not stable and therefore, not physically possible. This stability analysis is different by that presented by RoKa et al. (2013), who have presented a time-dependent analysis to determine the stability of the solution branches.
    Matched MeSH terms: Physical Phenomena
  10. Ali H. Ahmed Suliman, Webster Gumindoga, Ayob Katimon, Intan Zaurah Mat Darus
    Sains Malaysiana, 2014;43:1379-1388.
    This paper presents the application of TOPMODEL in the Pinang catchment of Malaysia for stream flow simulation. An attempt has been made to use remote-sensing data (ASTER DEM of 30 m resolution) as a primary input for TOPMODEL in order to simulate the stream flow pattern of this tropical catchment. A calibration period was executed based on 2007-2008 hydro-meteorological dataset which gave a satisfactory Nash-Sutcliffe model (NS) model efficiency of 0.749 and a relative volume error (RVE) of -19.2. The recession curve parameter (m) and soil transmissivity at saturation zone (To), were established as the most sensitive parameters through a sensitivity analysis processes. Hydro-meteorological datasets for the period between 2009 and 2010 were used to validate the model which resulted in satisfactory efficiencies of 0.774 (NS) and -19.84 (RVE), respectively. This study demonstrated the ability ASTER DEM acquired from remote sensing to generate the required TOPMODEL parameters for stream flow simulation which gives insights into better management of available water resources.
    Matched MeSH terms: Physical Phenomena
  11. Hayat T, Abbasi F, Ahmad B, Alsaedi A
    Sains Malaysiana, 2014;43:1583-1590.
    This article concerns with a mixed convection peristaltic flow of an electrically conducting fluid in an inclined asymmetric channel. Analysis has been carried out in the presence of Joule heating. The fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. A nonlinear coupled governing system is computed. Numerical results were presented for the velocity, pressure gradient, temperature and streamlines. Heat transfer rate at the wall is computed and analyzed. Graphs reflecting the contributions of embedded parameters were discussed.
    Matched MeSH terms: Physical Phenomena
  12. Halimah M, Chiew W, Sidek H, Daud W, Wahab Z, Khamirul A, et al.
    Sains Malaysiana, 2014;43:899-902.
    A series of (Li20)x(B203)1-x has been synthesized with mole fraction x=0.10, 0.15,020,025 and 0.30 mol% using melt quenching method. The structure of the glass system was determined by FTIR and X-ray diffraction. The density and molar volume were determined and the density increases with Li20 content whereas molar volume decreases with Li20. Refractive index of glass samples were measured by ellipsometer. Refractive index increases with increase of Li20. The absorption spectra of the studied glass showed that position of fundamental absorption edge shifts to longer wavelength with Li20. Optical band gap varies from 0.10 to 222 eV and Urbach energy varies from 2.91 to 1.55 eV. The variation in optical band gap and Urbach energy were due to the variation in the glass structure.
    Matched MeSH terms: Physical Phenomena
  13. Chaudhry AR, Armed R, Irfan A, Shaari A, Maarof H, Abdullah GAS
    Sains Malaysiana, 2014;43:867-875.
    We have designed new derivatives of naphtha [2 ,1-b:6 ,5-13V difuran as DPNDF-CN1 and DPNDF-CN2. The molecular structures of DPNDF, its derivatives DPNDF-CN1 and DPNDF-CN2 have been optimized at the ground (So) and first excited (S1) states using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. Then the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (Lumos), photoluminescence properties, electron affinities (EELS), reorganization energies (.1.$) and ionization potentials (iPs) have been investigated. The balanced A(h) and A(e) showed that DPNDF, DPNDF-CN1 and DPNDF-CN2 would be better charge transport materials for both hole and electron. The effect of attached acceptors on the geometrical parameters, electronic, optical and charge transfer properties have also been investigated.
    Matched MeSH terms: Physical Phenomena
  14. Chiu W, Too S, Daud S, Rashid N, Chia M, Rahman S, et al.
    Sains Malaysiana, 2014;43:941-945.
    In the present study, we report the size distribution study on the iron oxide (Fe304) magnetic nanocrystals (Ncs), which have been synthesized by using green chemistry approach with palm-oil based carboxylic compound (oleic acid) as capping ligands . The Fe304 Ncs were prepared by one pot reaction under non-hydrolytic approach. With the assistance of oleic acid that plays the role as effective capping-ligands , we showed that the Fe304 NCs that are highly monodispersed in size and shape can be synthesized by scrupulously controlling the reaction time. The diameter of Fe304 Ncs can be tuned within the range of 4.0-18.0 nm and exhibit very uniform morphology, which are spherical in shape. Current synthetic approach offers a cheap, environmentally benign and excellent repeatability route in large-scale production of high-quality magnetic Fe304 Ncs if compared to the preceding reports.
    Matched MeSH terms: Physical Phenomena
  15. Daryabor F, Tangang F, Liew J
    Sains Malaysiana, 2014;43:389-398.
    This study investigates the southwest monsoon circulation and temperature along the east coast of Peninsular Malaysia by using the Regional Ocean Modeling System at 9 km resolution. The simulated circulation shows strong northward flowing western boundary currents along the east coast of Peninsular Malaysia with maximum speed of approximately of 0.6-0.7 ms-1. The western boundary current, that extends to a depth of about 35 m, continues flowing northward up to approximately 7oN where it changes direction eastward. The circulation along the east coast of Peninsular Malaysia is also characterized by two anti-cyclonic eddies. Furthermore, an elongated of cooler sea surface temperature that stretches along the coast was also simulated. The existence of this cool SST pattern is associated with coastal upwelling process due to localized lifting of isotherms near the coast as a response to the southerly-southwesterly wind stress along the coast during the southwest monsoon.
    Matched MeSH terms: Physical Phenomena
  16. Solhan Yahya, Norinsan Kamil Othman, Abd Razak Daud, Azman Jalar
    Sains Malaysiana, 2014;43:1083-1087.
    The effect of scan rate on the accuracy of corrosion parameter in evaluating the efficiency of rice straw extract as corrosion inhibitor has been studied via potentiodynamic polarization measurement. Scan rate in the range of low (0.1- 0.25 mV s-1), medium (0.5-1.0 mV s-1) and high (1.5-2.0 mV s-1) scan were carried out on the carbon steel in 1 M HCl. The corrosion parameters such as corrosion rate, polarization resistance and corrosion current density have been analyzed through Tafel polarization curve. High scan rate gave poor accuracy of corrosion parameter compared to medium and low scan. Medium scan at 1.0 mV s-1 has been chosen as the optimum scan rate due to the approached steady-state and small disturbance of charged current. As a result, the addition of rice straw extract in 1 M HCl has reduced the values of corrosion current density in both cathodic and anodic reactions signified the corrosion has been inhibited. The efficiency of rice straw extracts as a corrosion inhibitor offer good result as much as 86%.
    Matched MeSH terms: Physical Phenomena
  17. Singh G, Makinde OD
    Sains Malaysiana, 2014;43:483-489.
    The paper is aimed at studying fluid flow heat transfer in the axisymmetric boundary layer flow of a viscous incompressible fluid, along the axial direction of a vertical stationary isothermal cylinder in presence of uniform free stream with momentum slip. The equations governing the flow i.e. continuity, momentum and energy equation are transformed into non-similar boundary layer equations and are solved numerically employing asymptotic series method with Shanks transformation. The numerical scheme involves the Runge-Kutta fourth order scheme along with the shooting technique. The flow is analyzed for both assisting and opposing buoyancy and the effect of different parameters on fluid velocity, temperature distribution, heat transfer and shear stress parameters is presented graphically.
    Matched MeSH terms: Physical Phenomena
  18. Mohd Afandi P. Mohammed
    Sains Malaysiana, 2014;43:451-457.
    This paper investigates the application of visco-hyperelastic model to soft rubberlike material, that is gluten. Gluten is a major protein in wheat flour dough (a mixture of flour and water) which exists as long network fibers and undergo large deformation under uniaxial tension and compression. The visco-hyperelastic model is represented by a combination of the viscoelastic Prony series and the hyperelastic extended tube model. Calibration of the visco-hyperelastic model to gluten tests result suggests that gluten can be modelled as a finite viscoelastic material.
    Matched MeSH terms: Physical Phenomena
  19. Mehmood OU, Norzie Mustapha, Sharidan Shafie, Hayat T
    Sains Malaysiana, 2014;43:1109-1118.
    This research looks at the effects of partial slip on heat and mass transfer of peristaltic transport. The magnetohydrodynamic (MHD) flow of viscous fluid in a porous asymmetric channel has been considered. The exact solutions for the stream function, longitudinal pressure gradient, longitudinal velocity, shear stress, temperature and concentration fields are derived by adopting long wavelength and small Reynolds number approximations. The results showed that peristaltic pumping and trapping are reduced with increasing velocity slip parameter. Furthermore, temperature increases with increasing thermal slip parameter. Moreover, the concentration profile decreases with increasing porosity parameter, Schmidt number and concentration slip parameter. Comparisons with published results are found to be in good agreement.
    Matched MeSH terms: Physical Phenomena
  20. Janic ES, Butigan V, Novakovic JD, Lekic M
    Sains Malaysiana, 2014;43:637-642.
    The extinction of Br2 molecules in gas state is measured for different wavelengths of incident light in interval of 370 - 570 nm by method of gas spectroscopy. The measurement is made on the basis of Franck-Condon's principle, under which a transition to a more excited state is done without changing the intercore distance (in further text, R). The graph of energy dependence on extinction is drawn. On the graph are recognized two Gausses slopes and their separation (deconvolution) is done. The complete Gausses functions are determined on graph. The method of mirror symmetry is applied on Gausses slopes of extinction and symmetrical extinction values (Es) are obtained. Borders of Franck-Condon's area are determined from ground state of Linear Harmonic Oscillator (LH0). Tables of dependence on R and the excitation energy are given. On the basis of these tables are drawn potential curves of electron energy E(R) in excited electronic states of Br2 molecules as functions of R in Franck-Condon's area.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links