Displaying publications 81 - 100 of 170 in total

Abstract:
Sort:
  1. Pratama E, Tian X, Lestari W, Iseki S, Ichwan SJ, Ikeda MA
    Biochem Biophys Res Commun, 2015 Dec;468(1-2):248-54.
    PMID: 26519881 DOI: 10.1016/j.bbrc.2015.10.121
    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.
    Matched MeSH terms: Promoter Regions, Genetic
  2. Mualif SA, Teow SY, Omar TC, Chew YW, Yusoff NM, Ali SA
    PLoS One, 2015;10(7):e0130446.
    PMID: 26147991 DOI: 10.1371/journal.pone.0130446
    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  3. Chen YF, Chong CL, Wu YC, Wang YL, Tsai KN, Kuo TM, et al.
    PLoS One, 2015;10(6):e0131743.
    PMID: 26121644 DOI: 10.1371/journal.pone.0131743
    Hepatitis B virus reactivation is an important medical issue in cancer patients who undergo systemic chemotherapy. Up to half of CHB carriers receiving chemotherapy develop hepatitis and among these cases a notable proportion are associated with HBV reactivation. However, the molecular mechanism(s) through which various chemotherapeutic agents induce HBV reactivation is not yet fully understood. In this study, we investigated the role of the cell cycle regulator p21 (Waf1/Cip1) in the modulation of HBV replication when a common chemotherapeutic agent, doxorubicin, is present. We showed that p21 expression was increased by doxorubicin treatment. This elevation in p21 expression enhanced the expression of CCAAT/enhancer-binding protein α (C/EBPα); such an increase is likely to promote the binding of C/EBPα to the HBV promoter, which will contribute to the activation of HBV replication. Our current study thus reveals the mechanism underlying doxorubicin modulation of HBV replication and provides an increased understanding of HBV reactivation in CHB patients who are receiving systemic chemotherapy.
    Matched MeSH terms: Promoter Regions, Genetic
  4. Ngai SC, Rosli R, Al Abbar A, Abdullah S
    Biomed Res Int, 2015;2015:346134.
    PMID: 25961011 DOI: 10.1155/2015/346134
    Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs) has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV) is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP) reporter gene driven by cytomegalovirus (CMV) promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC) inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP) assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.
    Matched MeSH terms: Promoter Regions, Genetic
  5. Bakar FA, Yeo CC, Harikrishna JA
    BMC Biotechnol, 2015;15:26.
    PMID: 25887501 DOI: 10.1186/s12896-015-0138-8
    Bacterial toxin-antitoxin systems usually comprise of a pair of genes encoding a stable toxin and its cognate labile antitoxin and are located in the chromosome or in plasmids of several bacterial species. Chromosomally-encoded toxin-antitoxin systems are involved in bacterial stress responses and activation of the toxins usually leads to cell death or dormancy. Overexpression of the chromosomally-encoded YoeB toxin from the yefM-yoeB toxin-antitoxin locus of the Gram-positive bacterium Streptococcus pneumoniae has been shown to cause cell death in S. pneumoniae as well as E. coli.
    Matched MeSH terms: Promoter Regions, Genetic
  6. Mohd Khalid MK, Yakob Y, Md Yasin R, Wee Teik K, Siew CG, Rahmat J, et al.
    Mol Vis, 2015;21:1185-90.
    PMID: 26539030
    The availability of molecular genetic testing for retinoblastoma (RB) in Malaysia has enabled patients with a heritable predisposition to the disease to be identified, which thus improves the clinical management of these patients and their families. In this paper, we presented our strategy for performing molecular genetic testing of the RB1 gene and the findings from our first 2 years of starting this service.
    Matched MeSH terms: Promoter Regions, Genetic
  7. Wei K, Sutherland H, Camilleri E, Haupt LM, Griffiths LR, Gan SH
    Mol Biol Rep, 2014 Dec;41(12):8285-92.
    PMID: 25213548 DOI: 10.1007/s11033-014-3729-x
    Computational epigenetics is a new area of research focused on exploring how DNA methylation patterns affect transcription factor binding that affect gene expression patterns. The aim of this study was to produce a new protocol for the detection of DNA methylation patterns using computational analysis which can be further confirmed by bisulfite PCR with serial pyrosequencing. The upstream regulatory element and pre-initiation complex relative to CpG islets within the methylenetetrahydrofolate reductase gene were determined via computational analysis and online databases. The 1,104 bp long CpG island located near to or at the alternative promoter site of methylenetetrahydrofolate reductase gene was identified. The CpG plot indicated that CpG islets A and B, within the island, contained 62 and 75 % GC content CpG ratios of 0.70 and 0.80-0.95, respectively. Further exploration of the CpG islets A and B indicates that the transcription start sites were GGC which were absent from the TATA boxes. In addition, although six PROSITE motifs were identified in CpG B, no motifs were detected in CpG A. A number of cis-regulatory elements were found in different regions within the CpGs A and B. Transcription factors were predicted to bind to CpGs A and B with varying affinities depending on the DNA methylation status. In addition, transcription factor binding may influence the expression patterns of the methylenetetrahydrofolate reductase gene by recruiting chromatin condensation inducing factors. These results have significant implications for the understanding of the architecture of transcription factor binding at CpG islets as well as DNA methylation patterns that affect chromatin structure.
    Matched MeSH terms: Promoter Regions, Genetic
  8. Qiu J, Kleineidam A, Gouraud S, Yao ST, Greenwood M, Hoe SZ, et al.
    Endocrinology, 2014 Nov;155(11):4380-90.
    PMID: 25144923 DOI: 10.1210/en.2014-1448
    The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase.
    Matched MeSH terms: Promoter Regions, Genetic
  9. Minning C, Mokhtar NM, Abdullah N, Muhammad R, Emran NA, Ali SA, et al.
    Int J Oncol, 2014 Nov;45(5):1959-68.
    PMID: 25175708 DOI: 10.3892/ijo.2014.2625
    There have been many DNA methylation studies on breast cancer which showed various methylation patterns involving tumour suppressor genes and oncogenes but only a few of those studies link the methylation data with gene expression. More data are required especially from the Asian region and to analyse how the epigenome data correlate with the transcriptome. DNA methylation profiling was carried out on 76 fresh frozen primary breast tumour tissues and 25 adjacent non-cancerous breast tissues using the Illumina Infinium(®) HumanMethylation27 BeadChip. Validation of methylation results was performed on 7 genes using either MS-MLPA or MS-qPCR. Gene expression profiling was done on 15 breast tumours and 5 adjacent non-cancerous breast tissues using the Affymetrix GeneChip(®) Human Gene 1.0 ST array. The overlapping genes between DNA methylation and gene expression datasets were further mapped to the KEGG database to identify the molecular pathways that linked these genes together. Supervised hierarchical cluster analysis revealed 1,389 hypermethylated CpG sites and 22 hypomethylated CpG sites in cancer compared to the normal samples. Gene expression microarray analysis using a fold-change of at least 1.5 and a false discovery rate (FDR) at p>0.05 identified 404 upregulated and 463 downregulated genes in cancer samples. Integration of both datasets identified 51 genes with hypermethylation with low expression (negative association) and 13 genes with hypermethylation with high expression (positive association). Most of the overlapping genes belong to the focal adhesion and extracellular matrix-receptor interaction that play important roles in breast carcinogenesis. The present study displayed the value of using multiple datasets in the same set of tissues and how the integrative analysis can create a list of well-focused genes as well as to show the correlation between epigenetic changes and gene expression. These gene signatures can help us understand the epigenetic regulation of gene expression and could be potential targets for therapeutic intervention in the future.
    Matched MeSH terms: Promoter Regions, Genetic
  10. Hoque MA, Islam MS, Islam MN, Kato T, Nishino N, Ito A, et al.
    Amino Acids, 2014 Oct;46(10):2435-44.
    PMID: 25048030 DOI: 10.1007/s00726-014-1800-5
    Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates.
    Matched MeSH terms: Promoter Regions, Genetic/drug effects
  11. Tan HT, Ellis JA, Koplin JJ, Martino D, Dang TD, Suaini N, et al.
    Pediatr Allergy Immunol, 2014 Oct;25(6):608-10.
    PMID: 24912553 DOI: 10.1111/pai.12245
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  12. Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal Lari R, Desai K, et al.
    Nat Commun, 2014 Sep 23;4:4999.
    PMID: 25248036 DOI: 10.1038/ncomms5999
    GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  13. Benner A, Mansouri L, Rossi D, Majid A, Willander K, Parker A, et al.
    Haematologica, 2014 Aug;99(8):1285-91.
    PMID: 25082786 DOI: 10.3324/haematol.2013.101170
    A number of single nucleotide polymorphisms have been associated with disease predisposition in chronic lymphocytic leukemia. A single nucleotide polymorphism in the MDM2 promotor region, MDM2SNP309, was shown to soothe the p53 pathway. In the current study, we aimed to clarify the effect of the MDM2SNP309 on chronic lymphocytic leukemia characteristics and outcome. We performed a meta-analysis of data from 2598 individual patients from 10 different cohorts. Patients' data and genetic analysis for MDM2SNP309 genotype, immunoglobulin heavy chain variable region mutation status and fluorescence in situ hybridization results were collected. There were no differences in overall survival based on the polymorphism (log rank test, stratified by study cohort; P=0.76; GG genotype: cohort-adjusted median overall survival of 151 months; TG: 153 months; TT: 149 months). In a multivariable Cox proportional hazards regression analysis, advanced age, male sex and unmutated immunoglobulin heavy chain variable region genes were associated with inferior survival, but not the MDM2 genotype. The MDM2SNP309 is unlikely to influence disease characteristics and prognosis in chronic lymphocytic leukemia. Studies investigating the impact of individual single nucleotide polymorphisms on prognosis are often controversial. This may be due to selection bias and small sample size. A meta-analysis based on individual patient data provides a reasonable strategy for prognostic factor analyses in the case of small individual studies. Individual patient data-based meta-analysis can, therefore, be a powerful tool to assess genetic risk factors in the absence of large studies.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  14. Rozak NI, Ahmad I, Gan SH, Abu Bakar R
    Sci Pharm, 2014 07 18;82(3):631-42.
    PMID: 25853073 DOI: 10.3797/scipharm.1406-01
    An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x(2) = 0.72, P>0.05) or the 5HT2A polymorphism (x(2) = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population.
    Matched MeSH terms: Promoter Regions, Genetic
  15. Maidin MS, Song AA, Jalilsood T, Sieo CC, Yusoff K, Rahim RA
    Plasmid, 2014 Jul;74:32-8.
    PMID: 24879963 DOI: 10.1016/j.plasmid.2014.05.003
    A vector that drives the expression of the reporter gusA gene in both Lactobacillus plantarum and Lactococcus lactis was constructed in this study. This vector contained a newly characterized heat shock promoter (Phsp), amplified from an Enterococcus faecium plasmid, pAR6. Functionality and characterization of this promoter was initially performed by cloning Phsp into pNZ8008, a commercial lactococcal plasmid used for screening of putative promoters which utilizes gusA as a reporter. It was observed that Phsp was induced under heat, salinity and alkaline stresses or a combination of all three stresses. The newly characterized Phsp promoter was then used to construct a novel Lactobacillus vector, pAR1801 and its ability to express the gusA under stress-induced conditions was reproducible in both Lb. plantarum Pa21 and L. lactis M4 hosts.
    Matched MeSH terms: Promoter Regions, Genetic
  16. Teoh PL, Sharrocks AD
    Cell Mol Biol Lett, 2014 Jun;19(2):215-32.
    PMID: 24715476 DOI: 10.2478/s11658-014-0190-8
    H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
    Matched MeSH terms: Promoter Regions, Genetic
  17. Soga T, Kitahashi T, Clarke IJ, Parhar IS
    Endocrinology, 2014 May;155(5):1944-55.
    PMID: 24605826 DOI: 10.1210/en.2013-1786
    Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17β and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17β treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.
    Matched MeSH terms: Promoter Regions, Genetic*
  18. Abdul Mutalib NE, Mat Isa N, Alitheen NB, Song AA, Rahim RA
    Plasmid, 2014 May;73:26-33.
    PMID: 24780699 DOI: 10.1016/j.plasmid.2014.04.003
    Plasmid DNAs isolated from lactic acid bacteria (LAB) such as Lactococcus lactis (L. lactis) has been gaining more interests for its positive prospects in genetic engineering-related applications. In this study, the lactococcal plasmid, pNZ8048 was modified so as to be able to express multiple genes in the eukaryotic system. Therefore, a cassette containing an internal ribosome entry site (IRES) was cloned between VP2 gene of a very virulent infectious bursal disease (vvIBDV) UPM 04190 of Malaysian local isolates and the reporter gene, green fluorescent protein (GFP) into pNZ:CA, a newly constructed derivative of pNZ8048 harboring the cytomegalovirus promoter (Pcmv) and polyadenylation signal. The new bicistronic vector, denoted as pNZ:vig was subjected to in vitro transcription/translation system followed by SDS-PAGE and Western blot analysis to rapidly verify its functionality. Immunoblotting profiles showed the presence of 49 and 29kDa bands that corresponds to the sizes of the VP2 and GFP proteins respectively. This preliminary result shows that the newly constructed lactococcal bicistronic vector can co-express multiple genes in a eukaryotic system via the IRES element thus suggesting its feasibility to be used for transfection of in vitro cell cultures and vaccine delivery.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  19. Greenwood M, Bordieri L, Greenwood MP, Rosso Melo M, Colombari DS, Colombari E, et al.
    J Neurosci, 2014 Mar 12;34(11):3810-20.
    PMID: 24623760 DOI: 10.1523/JNEUROSCI.4343-13.2014
    Arginine vasopressin (AVP) is a neurohypophysial hormone regulating hydromineral homeostasis. Here we show that the mRNA encoding cAMP responsive element-binding protein-3 like-1 (CREB3L1), a transcription factor of the CREB/activating transcription factor (ATF) family, increases in expression in parallel with AVP expression in supraoptic nuclei (SONs) and paraventicular nuclei (PVNs) of dehydrated (DH) and salt-loaded (SL) rats, compared with euhydrated (EH) controls. In EH animals, CREB3L1 protein is expressed in glial cells, but only at a low level in SON and PVN neurons, whereas robust upregulation in AVP neurons accompanied DH and SL rats. Concomitantly, CREB3L1 is activated by cleavage, with the N-terminal domain translocating from the Golgi, via the cytosol, to the nucleus. We also show that CREB3L1 mRNA levels correlate with AVP transcription level in SONs and PVNs following sodium depletion, and as a consequence of diurnal rhythm in the suprachiasmatic nucleus. We tested the hypothesis that CREB3L1 activates AVP gene transcription. Both full-length and constitutively active forms of CREB3L1 (CREB3L1CA) induce the expression of rat AVP promoter-luciferase reporter constructs, whereas a dominant-negative mutant reduces expression. Rat AVP promoter deletion constructs revealed that CRE-like and G-box sequences in the region between -170 and -120 bp are important for CREB3L1 actions. Direct binding of CREB3L1 to the AVP promoter was shown by chromatin immunoprecipitation both in vitro and in the SON itself. Injection of a lentiviral vector expressing CREB3L1CA into rat SONs and PVNs resulted in increased AVP biosynthesis. We thus identify CREB3L1 as a regulator of AVP transcription in the rat hypothalamus.
    Matched MeSH terms: Promoter Regions, Genetic/physiology
  20. Bayat O, Baradaran A, Ariff A, Mohamad R, Rahim RA
    Biotechnol Lett, 2014 Mar;36(3):581-5.
    PMID: 24185903 DOI: 10.1007/s10529-013-1390-4
    Human interferon alpha (IFN-α) was expressed in two strains of Lactococcus lactis by aid of two promoters (P32 and Pnis) giving rise to two recombinant strains: MG:IFN and NZ:IFN, respectively. The expression of IFN was confirmed by ELISA and western blotting. Highest production was achieved using glucose for growth of both recombinant strains with nisin, used for induction of the recombinant strain with Pnis promoter, at 30 ng/ml. The optimum time for MG:IFN was 9 h and for NZ:IFN was 4.5 h. The highest productions by MG:IFN and NZ:IFN were 1.9 and 2.4 μg IFN/l, respectively. Both of the expressed IFNs showed bioactivities of 1.9 × 10(6) IU/mg that were acceptable for further clinical studies.
    Matched MeSH terms: Promoter Regions, Genetic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links