Displaying publications 81 - 100 of 153 in total

Abstract:
Sort:
  1. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, et al.
    Genome Res, 2014 Oct;24(10):1676-85.
    PMID: 25015382 DOI: 10.1101/gr.168955.113
    Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.
    Matched MeSH terms: Protozoan Proteins/genetics*
  2. Gitaka JN, Takeda M, Kimura M, Idris ZM, Chan CW, Kongere J, et al.
    Malar J, 2017 03 02;16(1):98.
    PMID: 28253868 DOI: 10.1186/s12936-017-1743-x
    BACKGROUND: Plasmodium falciparum SURFIN4.1is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf4.1sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand.

    RESULTS: Positively significant departures from neutral expectations were detected on the surf4.1region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf4.1gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36).

    CONCLUSIONS: The authors infer that the high polymorphism of SURFIN4.1Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.

    Matched MeSH terms: Protozoan Proteins/genetics*
  3. Suwito H, Jumina, Mustofa, Pudjiastuti P, Fanani MZ, Kimata-Ariga Y, et al.
    Molecules, 2014 Dec 19;19(12):21473-88.
    PMID: 25532844 DOI: 10.3390/molecules191221473
    Some chalcones have been designed and synthesized using Claisen-Schmidt reactions as inhibitors of the ferredoxin and ferredoxin-NADP+ reductase interaction to pursue a new selective antimalaria agent. The synthesized compounds exhibited inhibition interactions between PfFd-PfFNR in the range of 10.94%-50%. The three strongest inhibition activities were shown by (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (50%), (E)-1-(4-aminophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one (38.16%), and (E)-1-(4-aminophenyl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one (31.58%). From the docking experiments we established that the amino group of the methoxyamino chlacone derivatives plays an important role in the inhibition activity by electrostatic interaction through salt bridges and that it forms more stable and better affinity complexes with FNR than with Fd.
    Matched MeSH terms: Protozoan Proteins/antagonists & inhibitors*; Protozoan Proteins/chemistry
  4. Mungthin M, Intanakom S, Suwandittakul N, Suida P, Amsakul S, Sitthichot N, et al.
    Malar J, 2014;13:117.
    PMID: 24670242 DOI: 10.1186/1475-2875-13-117
    Drug resistance in Plasmodium falciparum is a major problem in malaria control especially along the Thai-Myanmar and Thai-Cambodia borders. To date, a few molecular markers have been identified for anti-malarial resistance in P. falciparum, including the P. falciparum chloroquine resistance transporter (pfcrt) and the P. falciparum multidrug resistance 1 (pfmdr1). However no information is available regarding the distribution pattern of these gene polymorphisms in the parasites from the Thai-Malaysia border. This study was conducted to compare the distribution pattern of the pfcrt and pfmdr1 polymorphisms in the parasites from the lower southern provinces, Thai-Malaysia border and the upper southern provinces, Thai-Myanmar border. In addition, in vitro sensitivities of anti-malarial drugs including chloroquine, mefloquine, quinine, and artesunate were determined.
    Matched MeSH terms: Protozoan Proteins/genetics*; Protozoan Proteins/metabolism
  5. Al-abd NM, Mahdy MA, Al-Mekhlafi AM, Snounou G, Abdul-Majid NB, Al-Mekhlafi HM, et al.
    PLoS One, 2013;8(7):e67853.
    PMID: 23861823 DOI: 10.1371/journal.pone.0067853
    The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen.
    Matched MeSH terms: Protozoan Proteins/classification; Protozoan Proteins/genetics*
  6. Parthasarathy S, Fong MY, Ramaswamy K, Lau YL
    Am J Trop Med Hyg, 2013 May;88(5):883-7.
    PMID: 23509124 DOI: 10.4269/ajtmh.12-0727
    Toxoplasmosis in humans and other animals is caused by the protozoan parasite Toxoplasma gondii. During the process of host cell invasion and parasitophorous vacuole formation by the tachyzoites, the parasite secretes Rhoptry protein 8 (ROP8), an apical secretory organelle. Thus, ROP8 is an important protein for the pathogenesis of T. gondii. The ROP8 DNA was constructed into a pVAX-1 vaccine vector and used for immunizing BALB/c mice. Immunized mice developed immune response characterized by significant antibody responses, antigen-specific proliferation of spleen cells, and production of high levels of IFN-γ (816 ± 26.3 pg/mL). Challenge experiments showed significant levels of increase in the survival period (29 days compared with 9 days in control) in ROP8 DNA vaccinated mice after a lethal challenge with T. gondii. Results presented in this study suggest that ROP8 DNA is a promising and potential vaccine candidate against toxoplasmosis.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/immunology*
  7. Rapeah S, Norazmi MN
    Vaccine, 2006 Apr 24;24(17):3646-53.
    PMID: 16494975 DOI: 10.1016/j.vaccine.2006.01.053
    Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing the malarial epitopes F2R(II)EBA and (NANP)3 as well as two T cell epitopes of the M. tuberculosis ESAT-6 antigen, generated in favour of mycobacterium codon usage elicited specific immune response against these epitopes. Immunised Balb/c mice demonstrated an increase in almost all of the IgG subclasses against both malarial epitopes and enhanced splenocyte proliferative response against the malarial epitopes as well as selected peptides of ESAT-6. Furthermore, flow cytometric analyses showed elevated numbers of CD4+ lymphocytes expressing IFN-gamma and IL-2 against the ESAT-6 peptides, suggesting a specific Th1-mediated response. This study demonstrated that expressing malarial and TB epitopes in a single rBCG construct induced appropriate humoral and cellular immune response against immunogenic epitopes from both organisms.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/immunology*
  8. Lokanathan Y, Mohd-Adnan A, Kua BC, Nathan S
    J Fish Dis, 2016 Sep;39(9):1069-83.
    PMID: 27086498 DOI: 10.1111/jfd.12474
    Cryptocaryonosis is a major problem for mariculture, and the absence of suitable sero-surveillance tools for the detection of cryptocaryonosis makes it difficult to screen Cryptocaryon irritans-infected fish, particularly asymptomatic fish. In this study, we proposed a serum-based assay using selected C. irritans proteins to screen infected and asymptomatic fish. Eight highly expressed genes were chosen from an earlier study on C. irritans expressed sequence tags and ciliate glutamine codons were converted to universal glutamine codons. The chemically synthesized C. irritans genes were then expressed in an Escherichia coli expression host under optimized conditions. Five C. irritans proteins were successfully expressed in E. coli and purified by affinity chromatography. These proteins were used as antigens in an enzyme-linked immunosorbent assay (ELISA) to screen sera from experimentally immunized fish and naturally infected fish. Sera from both categories of fish reacted equally well with the expressed C. irritans recombinant proteins as well as with sonicated theronts. This study demonstrated the utility of producing ciliate recombinant proteins in a heterologous expression host. An ELISA was successfully developed to diagnose infected and asymptomatic fish using the recombinant proteins as antigens.
    Matched MeSH terms: Protozoan Proteins/analysis*; Protozoan Proteins/metabolism
  9. Chong SP, Jangi MS, Wan KL
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):123-8.
    PMID: 12186768
    VCP (Valosin-Containing Protein), a member of the AAA (ATPases Associated to a variety of cellular Activities) family of proteins, possesses a duplicated highly conserved ATPase domain. An expressed sequence tag (EST), representing a clone from the Eimeria tenella merozoite cDNA library, was found to have high similarity to VCP genes from other organisms. A complete sequence derived from the corresponding clone (designated eth060) shows amino acid identity of 42-62% with other members of the VCP subfamily. Sequence analysis identified a putative ATPase domain in the eth060 sequence. This domain was PCR-amplified using gene-specific primers and cloned into a pBAD/Thio-TOPO expression vector. Expression in Escherichia coli demonstrated that the putative ATPase domain, which consists of 414 amino acid residues, produced a fusion protein of approximately 60 kDa in size.
    Matched MeSH terms: Protozoan Proteins/genetics*; Protozoan Proteins/chemistry
  10. Tessema SK, Utama D, Chesnokov O, Hodder AN, Lin CS, Harrison GLA, et al.
    Infect Immun, 2018 08;86(8).
    PMID: 29784862 DOI: 10.1128/IAI.00485-17
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/immunology*
  11. Mungthin M, Watanatanasup E, Sitthichot N, Suwandittakul N, Khositnithikul R, Ward SA
    Am J Trop Med Hyg, 2017 03;96(3):624-629.
    PMID: 28044042 DOI: 10.4269/ajtmh.16-0668
    Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies, which can replace artesunate-mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this study was to determine the in vitro sensitivity of Thai Plasmodium falciparum isolates against piperaquine and the influence of the pfmdr1 gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted Thai isolates of P. falciparum were assessed for in vitro piperaquine sensitivity. Polymorphisms of the pfmdr1 gene were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC50 in Thai isolates of P. falciparum were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC50 of ≥ 100 nM were significantly less sensitive to piperaquine compared with the parasite with chloroquine IC50 of < 100 nM. No significant association between the pfmdr1 copy number and piperaquine IC50 values was found. In contrast, the parasites containing the pfmdr1 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implementation of dihydroartemisinin-piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this combination should be performed especially in areas where parasites containing the pfmdr1 86Y allele are predominant such as the Thai-Malaysian border.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/metabolism
  12. Baig AM, Khan NA, Katyara P, Lalani S, Baig R, Nadeem M, et al.
    Chem Biol Drug Des, 2021 01;97(1):18-27.
    PMID: 32602961 DOI: 10.1111/cbdd.13755
    Acanthamoeba spp. cause a corneal infection, Acanthamoeba keratitis (AK), and a cerebral infection, granulomatous amoebic encephalitis (GAE). Though aggressive chemotherapy has been able to kill the active trophozoite form of Acanthamoeba, the encysted form of this parasite has remained problematic to resist physiological concentrations of drugs. The emergence of encysted amoeba into active trophozoite form poses a challenge to eradicate this parasite. Acanthamoeba trophozoites have active metabolic machinery that furnishes energy in the form of ATPs by subjecting carbohydrates and lipids to undergo pathways including glycolysis and beta-oxidation of free fatty acids, respectively. However, very little is known about the metabolic preferences and dependencies of an encysted trophozoite on minerals or potential nutrients that it consumes to live in an encysted state. Here, we investigate the metabolic and nutrient preferences of the encysted trophozoite of Acanthamoeba castellanii and the possibility to target them by drugs that act on calcium ion dependencies of the encysted amoeba. The experimental assays, immunostaining coupled with bioinformatics tools show that the encysted Acanthamoeba uses diverse nutrient pathways to obtain energy in the quiescent encysted state. These findings highlight potential pathways that can be targeted in eradicating amoebae cysts successfully.
    Matched MeSH terms: Protozoan Proteins/metabolism; Protozoan Proteins/chemistry
  13. Othman N, Mohamed Z, Yahya MM, Leow VM, Lim BH, Noordin R
    Exp Parasitol, 2013 Aug;134(4):504-10.
    PMID: 23680184 DOI: 10.1016/j.exppara.2013.05.001
    Entamoeba histolytica is a causative agent of amoebic liver abscess (ALA) and is endemic in many underdeveloped countries. We investigated antigenic E. histolytica proteins in liver abscess aspirates using proteomics approach. Pus samples were first tested by real-time PCR to confirm the presence of E. histolytica DNA and the corresponding serum samples tested for E. histolytica-specific IgG by a commercial ELISA. Proteins were extracted from three and one pool(s) of pus samples from ALA and PLA (pyogenic liver abscess) patients respectively, followed by analysis using isoelectric focussing, SDS-PAGE and Western blot. Unpurified pooled serum samples from infected hamsters and pooled human amoebic-specific IgG were used as primary antibodies. The antigenic protein band was excised from the gel, digested and analysed by MALDI-TOF/TOF and LC-MS/MS. The results using both primary antibodies showed an antigenic protein band of ∼14kDa. Based on the mass spectrum analysis, putative tyrosine kinase is the most probable identification of the antigenic band.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/immunology; Protozoan Proteins/isolation & purification*
  14. Lau YL, Fong MY
    Exp Parasitol, 2008 Jul;119(3):373-8.
    PMID: 18457835 DOI: 10.1016/j.exppara.2008.03.016
    The full length surface antigen 2 (SAG2) gene of the protozoan parasite Toxoplasma gondii was cloned and intracellularly expressed in the Pichia pastoris expression system. The molecular weight of the expressed recombinant SAG2 (36 kDa) was much larger than the native SAG2 (22 kDa). This discrepancy in size was due to hyperglycosylation, as deglycosylation assay reduced the size of the recombinant SAG2 to 22 kDa. Despite being hyperglycosylated, the recombinant SAG2 reacted strongly with pooled anti-Toxoplasma human serum, pooled anti-Toxoplasma mouse serum and a SAG2-specific monoclonal antibody. The glycosylated recombinant SAG2 was further evaluated in Western blot and in-house enzyme-linked immunosorbent assay (ELISA) using 80 human serum samples, including confirmed early acute (IgM positive, IgG negative; n=20), acute (IgM positive, IgG positive; n=20) and chronic (IgM negative, IgG positive; n=20) toxoplasmosis patients, and toxoplasmosis negative control patients (n=20). Results of the Western blot showed that the recombinant SAG2 reacted with all 60 samples of the toxoplasmosis cases but not with the Toxoplasma-negative samples. The sensitivity of in-house ELISA was 80%, 95% and 100% for early acute, acute and chronic patients' serum samples, respectively. Vaccination study showed that serum from mice immunised with the glycosylated recombinant SAG2 reacted specifically with the native SAG2 of T. gondii. The mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P<0.01) and their survival time was increased compared to controls. Therefore, the present study shows that the P. pastoris-derived recombinant SAG2 was specific and suitable for use as antigen for detecting anti-Toxoplasma IgG and IgM antibodies. The vaccination study showed that recombinant SAG2 protein was immunoprotective in mice against lethal challenge.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/immunology*; Protozoan Proteins/metabolism
  15. Hoe LN, Wan KL, Nathan S
    Parasitology, 2005 Dec;131(Pt 6):759-68.
    PMID: 16336729
    The protozoan parasite Toxoplasma gondii produces a family of microneme proteins that are thought to play diverse roles in aiding the parasite's intracellular existence. Among these, TgMIC2 has a putative function in parasite adhesion to the host cell to initiate the invasion process. The invasion process may be localized and inhibited by monoclonal antibodies against the protein(s) involved. Here we report on the construction of a phage-displayed single-chain variable fragment (scFv) library from mice immunized with whole T. gondii parasites. The library was subsequently panned against recombinant TgMIC2 (rpTgMIC2) and 2 different groups of antibody clones were obtained, based on fingerprinting and sequencing data. The expressed recombinant scFv antibody was able to recognize rpTgMIC2 in a Western blot detection experiment. These results show that the phage display technology allows quick and effective production of monoclonal antibodies against parasite antigens. By panning the scFv-displayed library, we should be able to obtain a plethora of multi-functional scFv antibodies towards T. gondii proteins.
    Matched MeSH terms: Protozoan Proteins/biosynthesis; Protozoan Proteins/immunology*; Protozoan Proteins/isolation & purification
  16. Matsubayashi M, Teramoto-Kimata I, Uni S, Lillehoj HS, Matsuda H, Furuya M, et al.
    J Biol Chem, 2013 Nov 22;288(47):34111-34120.
    PMID: 24085304 DOI: 10.1074/jbc.M113.515544
    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/immunology*; Protozoan Proteins/metabolism
  17. Thiruvengadam G, Init I, Fong MY, Lau YL
    Trop Biomed, 2011 Dec;28(3):506-13.
    PMID: 22433878 MyJurnal
    Surface antigens are the most abundant proteins found on the surface of the parasite Toxoplasma gondii. Surface antigen 1 (SAG1) and Surface antigen 2 (SAG2) remain the most important and extensively studied surface proteins. These antigens have been identified to play a role in host cell invasion, immune modulation, virulence attenuation. Recombinant SAG1/2 was cloned and expressed in yeast Pichia pastoris. We describe here optimization of critical parameters involved in high yield expression of the recombinant SAG1/2. Our results suggest that recombinant SAG1/2 were best expressed at 30ºC, pH 6 and 1% methanol as the carbon source by X33 Pichia cells. Additional optimizations included the downstream process such as ammonium sulphate precipitation and dialysis. The fusion protein was purified using Ni-NTA purification system with 80% recovery. The purified protein was 100% specific and sensitive in detection of toxoplasmosis.
    Matched MeSH terms: Protozoan Proteins/biosynthesis*; Protozoan Proteins/genetics; Protozoan Proteins/isolation & purification
  18. Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM
    Expert Rev Vaccines, 2017 Jul;16(7):1-13.
    PMID: 28525963 DOI: 10.1080/14760584.2017.1333426
    INTRODUCTION: Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.
    Matched MeSH terms: Protozoan Proteins/genetics; Protozoan Proteins/immunology; Protozoan Proteins/therapeutic use*
  19. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Protozoan Proteins/classification; Protozoan Proteins/genetics*; Protozoan Proteins/metabolism
  20. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Saif-Ali R, Al-Mekhlafi AM, Surin J
    Parasit Vectors, 2011;4:233.
    PMID: 22166488 DOI: 10.1186/1756-3305-4-233
    Malaria is still a public health problem in Malaysia especially in the interior parts of Peninsular Malaysia and the states of Sabah and Sarawak (East Malaysia). This is the first study on the genetic diversity and genotype multiplicity of Plasmodium falciparum in Malaysia.
    Matched MeSH terms: Protozoan Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links