Buruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppressive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-beta. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain.
This paper reports the development of a one-step SYBR-Green I-based realtime RT-PCR assay for the detection and quantification of Chikungunya virus (CHIKV) in human, monkey and mosquito samples by targeting the E1 structural gene. A preliminary evaluation of this assay has been successfully completed using 71 samples, consisting of a panel of negative control sera, sera from healthy individuals, sera from patients with acute disease from which CHIKV had been isolated, as well as monkey sera and adult mosquito samples obtained during the chikungunya fever outbreak in Malaysia in 2008. The assay was found to be 100-fold more sensitive than the conventional RT-PCR with a detection limit of 4.12x10(0) RNA copies/μl. The specificity of the assay was tested against other related viruses such as Dengue (serotypes 1-4), Japanese encephalitis, Herpes Simplex, Parainfluenza, Sindbis, Ross River, Yellow fever and West Nile viruses. The sensitivity, specificity and efficiency of this assay were 100%, 100% and 96.8% respectively. This study on early diagnostics is of importance to all endemic countries, especially Malaysia, which has been facing increasingly frequent and bigger outbreaks due to this virus since 1999.
Getah virus (GETV), a mosquito-borne alphavirus, is an emerging animal pathogen causing outbreaks among racehorses and pigs. Early detection of the GETV infection is essential for timely implementation of disease prevention and control interventions. Thus, a rapid and accurate nucleic acid detection method for GETV is highly needed. Here, two TaqMan minor groove binding (MGB) probe-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays were developed. The qRT-PCR primers and TaqMan MGB probe were designed based on the conserved region of nsP1 and nsP2 genes of 23 GETV genome sequences retrieved from GenBank. Only the qRT-PCR assay using nsP2-specific primers and probe detected all two Malaysia GETV strains (MM2021 and B254) without cross-reacting with other closely related arboviruses. The qRT-PCR assay detected as few as 10 copies of GETV RNA, but its detection limit at the 95% probability level was 63.25 GETV genome copies (probit analysis, P ≤ 0.05). Further validation of the qRT-PCR assay using 16 spiked simulated clinical specimens showed 100% for both sensitivity and specificity. In conclusion, the qRT-PCR assay developed in this study is useful for rapid, sensitive and specific detection and quantification of GETV.
It is widely accepted that Newcastle disease is endemic in most African countries, but little attention has been afforded to establishing the sources and frequency of the introductions of exotic strains. Newcastle disease outbreaks have a high cost in Africa, particularly on rural livelihoods. Genotype VIIh emerged in South-East Asia and has since caused serious outbreaks in poultry in Malaysia, Indonesia, southern China, Vietnam and Cambodia. Genotype VIIh reached the African continent in 2011, with the first outbreaks reported in Mozambique. Here, we used a combination of phylogenetic evidence, molecular dating and epidemiological reports to trace the origins and spread of subgenotype VIIh Newcastle disease in southern Africa. We determined that the infection spread northwards through Mozambique, and then into the poultry of the north-eastern provinces of Zimbabwe. From Mozambique, it also reached neighbouring Malawi and Zambia. In Zimbabwe, the disease spread southward towards South Africa and Botswana, causing outbreaks in backyard chickens in early-to-mid 2013. In August 2013, the disease entered South Africa's large commercial industry, and the entire country was infected within a year, likely through fomites and the movements of cull chickens. Illegal poultry trading or infected waste from ships and not wild migratory birds was the likely source of the introduction to Mozambique in 2011.
During an outbreak from December 2004 to March 2005, 138 isolates of dengue virus were prospectively obtained from acute-phase serum samples of 1,067 patients with the provisional clinical diagnosis of acute dengue illness admitted to the adult wards of Hospital Tengku Ampuan Rahimah, Klang, Malaysia. Of the 138 dengue virus isolates, 87, 11, 24 and 3 were typed as dengue serotypes 1, 2, 3 and 4, respectively, by a commercial dengue virus typing kit using monoclonal antibodies (Mab). 13 dengue virus isolates could not be assigned to any specific serotype by serotyping Mab and molecular typing using dengue-type specific molecular typing primer pairs. We report the associated clinical features and limited molecular genetics of this Mab-escape dengue virus variant.
A method for the rapid diagnosis of early dengue virus (DENV) infection is highly needed. Here, a prototype reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed. The assay detected DENV RNA in <20 min without the need for thermocycling amplification. The assay enabled the detection of as few as 10 copies of DENV RNA. The designed RT-RPA primers and exo probe detected the DENV genome of at least 12 genotypes of DENV circulating globally without cross-reacting with other arboviruses. We assessed the diagnostic performance of the RT-RPA assay for the detection of DENV RNA in 203 serum samples of patients with clinically suspected dengue. The sera were simultaneously tested for DENV using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay, quantitative RT-PCR (qRT-PCR), and IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA). Acute DENV infection was confirmed in 130 samples and 61 of the samples (46.9%) were classified as viremic with qRT-PCR. The RT-RPA assay showed good concordance (κ of ≥0.723) with the RT-LAMP and qRT-PCR assays in detecting the dengue viremic samples. When used in combination with ELISA, both the RT-RPA and RT-LAMP assays increased the detection of acute DENV infection to ≥95.7% (≥45/47) in samples obtained within 5 days of illness. The results from the study suggest that the RT-RPA assay is the most rapid molecular diagnostic tool available for the detection of DENV. Hence, it is possible to use the RT-RPA assay in a laboratory to complement routine serology testing for dengue.
Accurate laboratory testing is a critical component of dengue surveillance and control. The objective of this programme was to assess dengue diagnostic proficiency among national-level public health laboratories in the World Health Organization (WHO) Western Pacific Region.
A SYBR Green I based one-step real-time reverse transcriptase polymerase chain reaction was developed for the detection and differentiation of very virulent (vv) and classical strains of infectious bursal disease virus (IBDV). The assay showed high PCR efficiency >93% and high reproducibility with coefficient of variation less than 0.5%. When tested on characterized IBDV strains, the very virulent and classical-specific primers detected accurately only vvIBDV and classical IBDV strains, respectively. The diagnostic efficacy of the assay was also tested on 140 bursal samples from experimental infection and 37 bursal samples from cases suspected of IBD. The assay was able to detect IBDV from bursal samples collected at days 3 and 5 post-infection with the vvIBDV strain UPM94/273 and the classical IBDV strain D78. The assay was also able to detect bursal samples infected dually with D78 and UPM94/273. The melting temperature values of the amplification products from the classical and very virulent viral infection were statistically significant (P<0.05). The specificity of the assay for detecting IBDV from suspected cases was confirmed by sequence analysis of the VP2 gene. The assay showed high sensitivity since bursal samples which were negative for IBDV were confirmed by virus isolation and PCR amplification. Hence, the new assay offers an attractive method for rapid detection of strains of IBDV.
During 2005, 764 children were brought to a large children's hospital in Ho Chi Minh City, Vietnam, with a diagnosis of hand, foot, and mouth disease. All enrolled children had specimens (vesicle fluid, stool, throat swab) collected for enterovirus isolation by cell culture. An enterovirus was isolated from 411 (53.8%) of the specimens: 173 (42.1%) isolates were identified as human enterovirus 71 (HEV71) and 214 (52.1%) as coxsackievirus A16. Of the identified HEV71 infections, 51 (29.5%) were complicated by acute neurologic disease and 3 (1.7%) were fatal. HEV71 was isolated throughout the year, with a period of higher prevalence in October-November. Phylogenetic analysis of 23 HEV71 isolates showed that during the first half of 2005, viruses belonging to 3 subgenogroups, C1, C4, and a previously undescribed subgenogroup, C5, cocirculated in southern Vietnam. In the second half of the year, viruses belonging to subgenogroup C5 predominated during a period of higher HEV71 activity.
The prevalence of feline coronavirus (FCoV) was studied in two catteries in Malaysia. Rectal swabs or faecal samples were collected from a total of 44 clinically healthy Persian purebred and mix-breed cats. RNA extracted from the faecal material was subjected to a reverse transcription-polymerase chain reaction (RT-PCR) using primers flanking for a conserved region of the virus genome. The overall prevalence of FCoV infection was 84% and the infection rate was higher in Persian purebred cats (96%) than mix-breed cats (70%). There was no significant association between the age or gender of tested cats and shedding the virus. This study is the first PCR-based survey for FCoV in Malaysia and showed the ubiquitous presence of FCoV in Malaysian cat colonies.
Tembusu virus (TMUV) is an important emerging arthropod-borne virus that may cause encephalitis in humans and has been isolated in regions of southeast Asia, including Malaysia, Thailand, and China. Currently, detection and identification of TMUV are limited to research laboratories, because quantitative rapid diagnostic assays for the virus do not exist. We describe the development of sensitive and specific conventional and real-time quantitative reverse transcription polymerase chain reaction assays for detecting TMUV RNA in infected cell culture supernatant and Culex tarsalis mosquitoes. We used this assay to document the replication of TMUV in Cx. tarsalis, where titers increased 1,000-fold 5 days after inoculation. These assays resulted in the detection of virus-specific RNA in the presence of copurified mosquito nucleic acids. The use of these rapid diagnostic assays may have future applications for field pathogen surveillance and may assist in early detection, diagnosis, and control of the associated arthropod-borne pathogens.
A new virus named Sitiawan virus (SV) was isolated from sick broiler chicks in chicken embryos. The virus replicated well with cytopathogenic effect (CPE) in the chicken B-lymphocyte cell line LSCC-BK3. The virus was an enveloped RNA virus of approximately 41 nm in size with hemagglutinating activity (HA) to goose erythrocytes. It was cross-reactive with Japanese encephalitis virus (JEV), a member of flaviviruses by HA inhibition tests but not by cross-virus neutralization tests. The cDNA fragment of NS5 gene was amplified with primers corresponding to NS5 gene of flaviviruses. The nucleotide sequences were 92% homologous to Tembusu virus, a member of the mosquito-borne virus cluster of the genus Flavivirus. In cross-neutralization tests with Tembusu virus, antiserum to SV did not neutralize Tembusu virus, and antiserum to Tembusu virus neutralized more weakly to SV than against homologous virus. These results indicate that SV is a new virus which can be differentiated serologically from Tembusu virus but is otherwise similar with respect to nucleotide sequence. The virus causes encephalitis, growth retardation, and increased blood glucose levels in inoculated chicks.
New Delhi metallo-β-lactamase-1 (NDM-1) is a relatively recent carbapenemase enzyme that inactivates all β-lactam antibiotics with the exception of aztreonam. This study aims to ascertain the baseline prevalence and antibiotic susceptibility patterns of NDM-1-producing Enterobacteriaceae in a tertiary medical center in Malaysia.
Respiratory infections represent a major public health problem worldwide. The study aimed to determine the prevalence of respiratory syncytial and influenza virus infections and analyzed in respect to demography and clinical perspective. Methods : The specimens were processed by cell culture and immunofluorescent assay (IFA) and real-time reverse transcriptase-PCR (rRT-PCR) for detection of respiratory viruses. Results : Out of 505 specimens 189 (37.8%) were positive, in which RSV was positive in 124(24.8%) cases and influenza A was positive in 65(13%) cases. Positive cases for influenza virus A and RSV were analyzed based on demography: age, gender, ethnicity and clinical symptoms. There were no significant differences among gender, ethnicity and clinical symptoms in both RSV and influenza A virus infections. It was observed that children below 3 years of ages were more prone to RSV infections. On the contrary, influenza virus A infected all age groups of humans.
X-linked agammaglobulinemia (XLA) is a rare genetic disorder caused by mutations in the Bruton's tyrosine kinase (BTK) gene. These mutations cause defects in early B cell development. A patient with no circulating B cells and low serum immunoglobulin isotypes was studied as were his mother and sister. Monocyte BTK protein expression was evaluated by flow cytometry. The mutation was determined using PCR and followed by sequencing. Flow cytometry showed the patient lacked BTK protein expression in his monocytes while the mother and sister had 62% and 40% of the monocytes showing BTK protein expressions respectively. The patient had a novel base substitution in the first nucleotide of intron 9 in the BTK gene, and the mutation was IVS9+1G
Kisspeptin has recently been recognized as a critical regulator of reproductive function in vertebrates. During the sexual development, kisspeptin neurons receive sex steroids feedback to trigger gonadotropin-releasing hormone (GnRH) neurons. In teleosts, a positive correlation has been found between the thyroid status and the reproductive status. However, the role of thyroid hormone in the regulation of kisspeptin system remains unknown. We cloned and characterized a gene encoding kisspeptin (kiss2) in a cichlid fish, the Nile tilapia (Oreochromis niloticus). Expression of kiss2 mRNA in the brain was analyzed by in situ hybridization. The effect of thyroid hormone (triiodothyronine, T3) and hypothyroidism with methimazole (MMI) on kiss2 and the three GnRH types (gnrh1, gnrh2, and gnrh3) mRNA expression was analyzed by real-time PCR. Expression of thyroid hormone receptor mRNAs were analyzed in laser-captured kisspeptin and GnRH neurons by RT-PCR. The kiss2 mRNA expressing cells were seen in the nucleus of the lateral recess in the hypothalamus. Intraperitoneal administration of T3 (5 μg/g body weight) to sexually mature male tilapia significantly increased kiss2 and gnrh1 mRNA levels at 24 h post injection (P
Human respiratory syncytial virus (RSV) is a major viral pathogen associated with acute lower respiratory tract infections (ALRTIs) among hospitalized children. In this study, the genetic diversity of the RSV strains was investigated among nasopharyngeal aspirates (NPA) taken from children less than 5 years of age hospitalized with ALRTIs in Hospital Serdang, Malaysia. A total of 165 NPA samples were tested for the presence of RSV and other respiratory viruses from June until December 2009. RSV was found positive in 83 (50%) of the samples using reverse transcription polymerase chain reaction (RT-PCR). Further classification of 67 RSV strains showed that subgroups A and B comprised 11/67 (16.4%) and 56/67 (83.6%) of the strains, respectively. The second hypervariable region at the carboxyl-terminal of the G gene was amplified and sequenced in order to do phylogenetic study. The phylogenetic relationships of the samples were determined separately for subgroups A and B using neighbor joining (NJ), maximum parsimony (MP), and Bayesian inference (BI). Phylogenetic analysis of the 32 sequenced samples showed that all 9 RSV-A strains were clustered within NA1 genotype while the remaining 23 strains of the RSV-B subgroup could be grouped into a clade consisted of strains with 60-nucleotide duplication region. They were further classified into newly discovered BA10 and BA9 genotypes. The present finding suggests the emergence of RSV genotypes of NA1 and BA. This is the first documentation of the phylogenetic relationship and genetic diversity of RSV strains among hospitalized children diagnosed with ALRTI in Serdang, Malaysia.
Unspecialized cells that can renew themselves and give rise to multiple differentiated cell types are termed stem cells. The objective of this study was to characterize and investigate, through molecular and biochemical analyses, the stemness of cells derived from isolated mononucleated cells that originated from peripheral blood. The isolated mononucleated cells were separated according to their physical characteristics (adherent and suspension), after 4 to 7 days into a 14-day culturing period in complete medium. Our results revealed that adherent and suspension cells were positive for mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) markers, respectively. Differentiation of adherent cells into osteoblasts was associated with expression of the OPN gene and increasing ALP enzyme activity, while differentiation of suspension cells into osteoclasts was associated with expression of the TRAP gene and increasing TRAP enzyme activity. In conclusion, molecular and biochemical analyses showed that mononucleated cells consist of MSC (adherent) and HSC (suspension), and both cell types are able to differentiate into specialized cells from their respective lineage: osteoblast (MSC) and osteoclast (HSC).
The tachykinins are a family of neuropeptides, including substance P (SP), neurokinin A (NKA), and neurokinin B (NKB), that are encoded by the tac1 (SP and NKA) or tac2/3 (NKB) genes. Tachykinins are widely distributed in the central nervous system and have roles as neurotransmitters and/or neuromodulators. Recent studies in mammals have demonstrated the coexpression of NKB and kisspeptin and their comodulatory roles over the control of reproduction. We have recently identified two kisspeptin-encoding genes, kiss1 and kiss2, in teleosts. However, such relationship between tachykinins and kisspeptins has not been demonstrated in non-mammalian species. To determine the involvement of tachykinins in the reproduction in teleosts, we identified tac1 and two tac2 (tac2a and tac2b) sequences in the zebrafish genome using in silico data mining. Zebrafish tac1 encodes SP and NKA, whereas the tac2 sequences encode NKB and an additional peptide homologous to NKB (NKB-related peptide). Digoxigenin in situ hybridization in the brain of zebrafish showed tac1 mRNA-containing cells in the olfactory bulb, telencephalon, preoptic region, hypothalamus, mesencephalon, and rhombencephalon. The zebrafish tac2a mRNA-containing cells were observed in the preoptic region, habenula, and hypothalamus, whereas the tac2b mRNA-containing cells were predominantly observed in the dorsal telencephalic area. Furthermore, we examined the coexpression of tachykinins and two kisspeptin genes in the brain of zebrafish. Dual fluorescent in situ hybridization showed no coexpression of tachykinins mRNA with kisspeptins mRNA in hypothalamic nuclei or the habenula. These results suggest the presence of independent pathways for kisspeptins and NKB neurons in the brain of zebrafish.