METHODS: A total of 95 blood samples from long-tailed macaques in the Philippines were collected from three locations; 30 were from captive macaques at the National Wildlife Rescue and Rehabilitation Center (NWRRC) in Luzon, 25 were from captive macaques at the Palawan Wildlife Rescue and Conservation Center (PWRCC) in Palawan and 40 were from wild macaques from Puerto Princesa Subterranean River National Park (PPSRNP) in Palawan. The Plasmodium spp. infecting the macaques were identified using nested PCR assays on DNA extracted from these blood samples.
RESULTS: All 40 of the wild macaques from PPSRNP in Palawan and 5 of 25 captive macaques from PWRCC in Palawan were Plasmodium-positive; while none of the 30 captive macaques from the NWRRC in Luzon had any malaria parasites. Overall, P. inui was the most prevalent malaria parasite (44.2%), followed by P. fieldi (41.1%), P. cynomolgi (23.2%), P. coatneyi (21.1%), and P. knowlesi (19%). Mixed species infections were also observed in 39 of the 45 Plasmodium-positive macaques. There was a significant difference in the prevalence of P. knowlesi among the troops of wild macaques from PPSRNP.
CONCLUSION: Wild long-tailed macaques from the island of Palawan, the Philippines are infected with P. knowlesi, P. inui, P. coatneyi, P. fieldi and P. cynomolgi. The prevalence of these Plasmodium spp. varied among the sites of collection and among troops of wild macaques at one site. The presence of these simian Plasmodium parasites, especially P. knowlesi and P. cynomolgi in the long-tailed macaques in Palawan presents risks for zoonotic transmission in the area.
METHOD: A total of 140 urine samples were collected from trapped rats. These samples were cultured in EMJH enriched media and 18 of these samples (12.9%) were found to be positive when observed under x40 by dark field microscope. Genomic DNA was extracted from all the 18 native isolates for PCR.
RESULT: All the 18 isolates generated the expected 786 base pair band when the set of primers known to amplify LipL32 gene were utilized. These results showed that the primers were suitable to be used for the identification of pathogenic leptospira from the 18 rat samples.
CONCLUSION: The sequencing of the PCR products and BLAST analysis performed on each representative isolates confirmed the pathogenic status of all these native isolates as the LipL32 gene was detected in all the Leptospira isolates. This indicates that the rats are carriers of the pathogenic leptospira in the study area, and therefore are of public health importance.