Displaying publications 81 - 100 of 193 in total

Abstract:
Sort:
  1. George R, Duraisamy G
    Acta Trop, 1981 Mar;38(1):71-8.
    PMID: 6111919
    Analysis of the bleeding manifestations of 130 cases of dengue haemorrhagic fever admitted into the Children's ward of the General Hospital, Kuala Lumpur from May 1973 to September 1978 has been done. Petechial skin rash, epistaxis and gum bleeding were seen most commonly in mild and moderately severe cases. However, blood stained gastric aspirates, and severe haematemesis were seen in severe or very severe cases. Though with better vector control and preventive measures, a marked reduction in the incidence of the cases has been noted, severe cases were seen with symptoms of shock and gastrointestinal bleeding. These symptoms carried a bad prognosis. Among 15 children that died 10 had gastrointestinal bleeding and 2 had a disseminated intravascular coagulation defect. Lymphocytosis with atypical lymphocytes, low platelet count, low reticulocyte count and raised packed cell volume were the main haematological features seen in all these cases. All these features reverted to normal within a week. Mild evidence of disseminated intravascular coagulation was seen in a number of cases, but severe features were seen only in four. Two cases improved as a result of heparin therapy.
    Matched MeSH terms: Dengue/epidemiology
  2. Chang MS, Jute N
    Med J Malaysia, 1986 Dec;41(4):310-9.
    PMID: 3670153
    An outbreak of Dengue and Dengue Harmorrhagic Fever occurred in Lawas District in 1983. A total of 134 cases were notified with 74 cases serologically confirmed. The epidemic which lasted for three months starting from week 20 and peaking in week 24 before being brought under control in week 35 is the first to occur in the district. At the end of the epidemic, 54 localities were affected starting from areas within the vicinity of the town before spreading further inland with the movement of the population.
    Entomological investigation in all the infected areas revealed a high density of Aedes albopictus which was the sole vector present. Effective control of the epidemic was achieved through proper planning, active participation of various agencies and intensive outdoor spraying with malathion 2% or ULV concentrates.
    Matched MeSH terms: Dengue/epidemiology*
  3. Cardosa MJ
    Lancet, 1987 Jan 24;1(8526):193-4.
    PMID: 2880019
    Acute-phase serum samples collected during an outbreak of dengue fever and dengue haemorrhagic fever in Penang, Malaysia, were tested by a method involving antibody-dependent enhancement of infectivity in the mouse macrophage-like cell line, P388D1. 58 of 71 (81.7%) serologically positive cases yielded virus.
    Matched MeSH terms: Dengue/epidemiology
  4. Tan SY, Kumar G, Surrun SK, Ong YY
    Travel Med Infect Dis, 2007 Jan;5(1):62-3.
    PMID: 17161325
    Dengue fever is endemic in many countries of South East Asia. In spite of the occasional epidemics, dengue maculopathy remains a rare entity.
    Matched MeSH terms: Dengue/epidemiology
  5. Irving AT, Rozario P, Kong PS, Luko K, Gorman JJ, Hastie ML, et al.
    Cell Mol Life Sci, 2020 Apr;77(8):1607-1622.
    PMID: 31352533 DOI: 10.1007/s00018-019-03242-x
    Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.
    Matched MeSH terms: Dengue/epidemiology
  6. Zeng W, Halasa-Rappel YA, Baurin N, Coudeville L, Shepard DS
    Vaccine, 2018 01 08;36(3):413-420.
    PMID: 29229427 DOI: 10.1016/j.vaccine.2017.11.064
    Following publication of results from two phase-3 clinical trials in 10 countries or territories, endemic countries began licensing the first dengue vaccine in 2015. Using a published mathematical model, we evaluated the cost-effectiveness of dengue vaccination in populations similar to those at the trial sites in those same Latin American and Asian countries. Our main scenarios (30-year horizon, 80% coverage) entailed 3-dose routine vaccinations costing US$20/dose beginning at age 9, potentially supplemented by catch-up programs of 4- or 8-year cohorts. We obtained illness costs per case, dengue mortality, vaccine wastage, and vaccine administration costs from the literature. We estimated that routine vaccination would reduce yearly direct and indirect illness cost per capita by 22% (from US$10.51 to US$8.17) in the Latin American countries and by 23% (from US$5.78 to US$4.44) in the Asian countries. Using a health system perspective, the incremental cost-effectiveness ratio (ICER) averaged US$4,216/disability-adjusted life year (DALY) averted in the five Latin American countries (range: US$666/DALY in Puerto Rico to US$5,865/DALY in Mexico). In the five Asian countries, the ICER averaged US$3,751/DALY (range: US$1,935/DALY in Malaysia to US$5,101/DALY in the Philippines). From a health system perspective, the vaccine proved to be highly cost effective (ICER under one times the per capita GDP) in seven countries and cost effective (ICER 1-3 times the per capita GDP) in the remaining three countries. From a societal perspective, routine vaccination proved cost-saving in three countries. Including catch-up campaigns gave similar ICERs. Thus, this vaccine could have a favorable economic value in sites similar to those in the trials.
    Matched MeSH terms: Dengue/epidemiology*
  7. Sam IC, Montoya M, Chua CL, Chan YF, Pastor A, Harris E
    Trans R Soc Trop Med Hyg, 2019 11 01;113(11):678-684.
    PMID: 31294807 DOI: 10.1093/trstmh/trz056
    BACKGROUND: Zika virus (ZIKV) is believed to be endemic in Southeast Asia. However, there have been few Zika cases reported to date in Malaysia, which could be due to high pre-existing levels of population immunity.

    METHODS: To determine Zika virus (ZIKV) seroprevalence in Kuala Lumpur, Malaysia, 1085 serum samples from 2012, 2014-2015 and 2017 were screened for anti-ZIKV antibodies using a ZIKV NS1 blockade-of-binding assay. Reactive samples were confirmed using neutralization assays against ZIKV and the four dengue virus (DENV) serotypes. A sample was possible ZIKV seropositive with a ZIKV 50% neutralization (NT50) titre ≥20. A sample was probable ZIKV seropositive if, in addition, all DENV NT50 titres were <20 or the ZIKV NT50 titre was >4-fold greater than the highest DENV NT50 titre.

    RESULTS: We found low rates of possible ZIKV seropositivity (3.3% [95% confidence interval {CI} 2.4 to 4.6]) and probable ZIKV seropositivity (0.6% [95% CI 0.3 to 1.4]). Possible ZIKV seropositivity was independently associated with increasing age (odds ratio [OR] 1.04 [95% CI 1.02 to 1.06], p<0.0001) and male gender (OR 3.5 [95% CI 1.5 to 8.6], p=0.005).

    CONCLUSIONS: The low ZIKV seroprevalence rate, a proxy for population immunity, does not explain the low incidence of Zika in dengue-hyperendemic Kuala Lumpur. Other factors, such as the possible protective effects of pre-existing flavivirus antibodies or reduced transmission by local mosquito vectors, should be explored. Kuala Lumpur is at high risk of a large-scale Zika epidemic.

    Matched MeSH terms: Dengue/epidemiology*
  8. Liew JWK, Selvarajoo S, Phang WK, Mah Hassan M, Redzuan MS, Selva Kumar S, et al.
    Acta Trop, 2021 Apr;216:105829.
    PMID: 33465350 DOI: 10.1016/j.actatropica.2021.105829
    The aim of this study is to investigate the feasibility and outcomes of using Gravid Oviposition Sticky (GOS) trap and dengue NS1 antigen tests for indoor and outdoor dengue/Aedes surveillance in the field. A one-year community-based study was carried out at Sungai Buloh Hospital Quarters, Selangor, Malaysia. GOS traps were first placed outdoors in three apartment blocks (Anggerik, Bunga Raya and Mawar). Beginning 29th week of the study, indoor traps were set in two apartment units on every floor in Anggerik. All female Aedes mosquitoes caught were tested for the presence of dengue NS1 antigen. Dengue seroprevalence and knowledge, attitude and practices on dengue prevention of the community and their reception to the surveillance approach were also assessed. Dengue-positive mosquitoes were detected at least 1 week before a dengue onset. More mosquitoes were caught indoors than outdoors in block Anggerik, but the total number of mosquitoes caught in all 3 blocks were similar. There was a significant difference in distribution of Ae. aegypti and Ae. albopictus between the 3 blocks. 66.1% and 3.4% of the community were positive for dengue IgG and IgM, respectively. Most respondents think that this surveillance method is Good (89%) and support its use nationwide. Dengue case ratio in the study apartment blocks decreased from year 2018 to 2019. This study demonstrated the practicality of performing proactive dengue/Aedes surveillance inside apartment units using the GOS traps. This surveillance method can be performed with immediate result output in the field.
    Matched MeSH terms: Dengue/epidemiology
  9. Salim NAM, Wah YB, Reeves C, Smith M, Yaacob WFW, Mudin RN, et al.
    Sci Rep, 2021 01 13;11(1):939.
    PMID: 33441678 DOI: 10.1038/s41598-020-79193-2
    Dengue fever is a mosquito-borne disease that affects nearly 3.9 billion people globally. Dengue remains endemic in Malaysia since its outbreak in the 1980's, with its highest concentration of cases in the state of Selangor. Predictors of dengue fever outbreaks could provide timely information for health officials to implement preventative actions. In this study, five districts in Selangor, Malaysia, that demonstrated the highest incidence of dengue fever from 2013 to 2017 were evaluated for the best machine learning model to predict Dengue outbreaks. Climate variables such as temperature, wind speed, humidity and rainfall were used in each model. Based on results, the SVM (linear kernel) exhibited the best prediction performance (Accuracy = 70%, Sensitivity = 14%, Specificity = 95%, Precision = 56%). However, the sensitivity for SVM (linear) for the testing sample increased up to 63.54% compared to 14.4% for imbalanced data (original data). The week-of-the-year was the most important predictor in the SVM model. This study exemplifies that machine learning has respectable potential for the prediction of dengue outbreaks. Future research should consider boosting, or using, nature inspired algorithms to develop a dengue prediction model.
    Matched MeSH terms: Dengue/epidemiology*
  10. Rozilawati H, Tanaselvi K, Nazni WA, Mohd Masri S, Zairi J, Adanan CR, et al.
    Trop Biomed, 2015 Mar;32(1):49-64.
    PMID: 25801254 MyJurnal
    Entomological surveillance was conducted in order to determine the abundance and to evaluate any changes of biological vectors or ecology, especially in the dengue outbreak areas. The abundance and breeding preference of Aedes albopictus and Aedes aegypti were conducted in selected dengue outbreak localities in three states of peninsular Malaysia namely Selangor, Federal Territory of Kuala Lumpur, and Penang Island using ovitraps and larval survey method. It was determined that Ae. albopictus was predominant in most of the localities and found to breed more outdoor than indoor. A wide range of breeding foci were recorded in this study. It was also determined that ovitrap method was more effective to detect the presence of Aedes mosquitoes when the larval survey was at low rate of infestation. The abundance of Ae. albopictus in dengue outbreak localities emphasis that the vector control programme should also target this species together with the primary dengue vector, Ae. aegypti.
    Matched MeSH terms: Dengue/epidemiology*
  11. Ab-Fatah M, Subenthiran S, Abdul-Rahman PS, Saat Z, Thayan R
    Trop Biomed, 2015 Mar;32(1):187-91.
    PMID: 25801270 MyJurnal
    Dengue serotype surveillance is important as any changes in serotype distribution may result in an outbreak or increase in severe dengue cases. This study aimed to determine circulating dengue serotypes in two hospitals in Selangor. Serum samples were collected from patients admitted for dengue at these two major public hospitals i.e. Hospital Sungai Buloh (HSB) and Hospital Tunku Ampuan Rahimah (HTAR) between November 2010 and August 2011 and subjected to real-time RT-PCR using SYBR® Green. All four dengue serotypes were detected in samples from both hospitals. The predominating serotype was dengue 1 in samples from both hospitals (HSB, DENV-1; 25.53 % and HTAR, DENV-1; 32.1 %).
    Matched MeSH terms: Dengue/epidemiology*
  12. Fariz-Safhan MN, Tee HP, Abu Dzarr GA, Sapari S, Lee YY
    Trop Biomed, 2014 Jun;31(2):270-80.
    PMID: 25134895 MyJurnal
    During a dengue outbreak in 2005 in the East-coast region of Peninsular Malaysia, one of the worst hit areas in the country at that time, we undertook a prospective study. We aimed to describe the bleeding outcome and changes in the liver and hematologic profiles that were associated with major bleeding outcome during the outbreak. All suspected cases of dengue admitted into the only referral hospital in the region during the outbreak were screened for WHO 2002 criteria and serology. Liver function, hematologic profile and severity of bleeding outcome were carefully documented. The association between symptoms, liver and hematologic impairments with the type of dengue infection (classical vs. hemorrhagic) and bleeding outcome (major vs. non-major) was tested. Dengue fever was confirmed in 183 cases (12.5/100,000 population) and 144 cases were analysed. 59.7% were dengue hemorrhagic fever, 3.5% were dengue shock syndrome and there were 3 in-hospital deaths. Major bleeding outcome (gastrointestinal bleeding, intracranial bleeding or haemoptysis) was present in 14.6%. Elevated AST, ALT and bilirubin were associated with increasing severity of bleeding outcome (all P < 0.05). Platelet count and albumin level were inversely associated with increasing severity of bleeding outcome (both P < 0.001). With multivariable analysis, dengue hemorrhagic fever was more likely in the presence of abdominal pain (OR 1.1, 95% CI 0.02- 1.6) and elevated AST (OR 1.0, 95% CI 1.0-1.1) but the presence of pleural effusion (OR 5.8, 95% CI: 1.1-29.9) and elevated AST (OR 1.008, 95% CI: 1.005-1.01) predicted a severe bleeding outcome. As a conclusion, the common presence of a severe hemorrhagic form of dengue fever may explain the rising death toll in recent outbreaks and the worst impairment in liver and hematologic profiles was seen in major bleeding outcome.
    Study site: Hospital Tengku Ampuan Afzan (HTAA), Kuantan, Pahang, Malaysia
    Matched MeSH terms: Dengue/epidemiology*
  13. Rohani A, Suzilah I, Malinda M, Anuar I, Mohd Mazlan I, Salmah Maszaitun M, et al.
    Trop Biomed, 2011 Aug;28(2):237-48.
    PMID: 22041742
    Early detection of a dengue outbreak is an important first step towards implementing effective dengue interventions resulting in reduced mortality and morbidity. A dengue mathematical model would be useful for the prediction of an outbreak and evaluation of control measures. However, such a model must be carefully parameterized and validated with epidemiological, ecological and entomological data. A field study was conducted to collect and analyse various parameters to model dengue transmission and outbreak. Dengue prone areas in Kuala Lumpur, Pahang, Kedah and Johor were chosen for this study. Ovitraps were placed outdoor and used to determine the effects of meteorological parameters on vector breeding. Vector population in each area was monitored weekly for 87 weeks. Weather stations, consisting of a temperature and relative humidity data logger and an automated rain gauge, were installed at key locations in each study site. Correlation and Autoregressive Distributed Lag (ADL) model were used to study the relationship among the variables. Previous week rainfall plays a significant role in increasing the mosquito population, followed by maximum humidity and temperature. The secondary data of rainfall, temperature and humidity provided by the meteorological department showed an insignificant relationship with the mosquito population compared to the primary data recorded by the researchers. A well fit model was obtained for each locality to be used as a predictive model to foretell possible outbreak.
    Matched MeSH terms: Dengue/epidemiology*
  14. Cheah WL, Chang MS, Wang YC
    Trop Biomed, 2006 Jun;23(1):85-96.
    PMID: 17041556 MyJurnal
    The objective of this study was to elucidate the association of various risk factors with dengue cases reported in Lundu district, Sarawak, by analyzing the interaction between environmental, entomological, socio-demographic factors. Besides conventional entomological, serological and house surveys, this study also used GIS technology to generate geographic and environmental data on Aedes albopictus and dengue transmission. Seven villages were chosen based on the high number of dengue cases reported. A total of 551 households were surveyed. An overall description of the socio-demographic background and basic facilities was presented together with entomological and geographical profiles. For serological and ovitrap studies, systematic random sampling was used. Serological tests indicated that 23.7% of the 215 samples had a history of dengue, either recent or previous infections. Two samples (0.9%) were confirmed by IgM ELISA and 49 samples (22.8%) had IgG responses. A total of 32,838 Aedes albopictus eggs were collected in 56 days of trapping. Cluster sampling was also done to determine whether any of the risk factors (entomological or geographical) were influenced by geographical location. These clusters were defined as border villages with East Kalimantan and roadside villages along Lundu/Biawas trunk road. The data collected were analyzed using SPSS version 10.01. Descriptive analysis using frequency, means, and median were used. To determine the association between variables and dengue cases reported, and to describe the differences between the two clusters of villages, two-sample t-test, and Pearson's Chi-Square were used. Accurate maps were produced with overlay and density function, which facilitates the map visualization and report generating phases. This study also highlights the use of differential Global Positioning System in mapping sites of 1m accuracy. Analysis of the data revealed there are significant differences in clusters of villages attributable to container density, house density, distance of the house from the main road, and number of Ae. albopictus eggs from ovitraps set indoor, outdoor and in dumping sites (Person's Chi-Square = 6.111, df = 1, p < 0.01). Further analysis using t-test showed that house density, container density, indoor mosquitoes egg count, outdoor mosquitoes egg count, and dumping sites mosquitoes egg count were higher at the roadside villages compared to border villages. A number of potential risk factors including those generated from GIS were investigated. None of the factors investigated in this study were associated with the dengue cases reported.
    Matched MeSH terms: Dengue/epidemiology*
  15. Chen CD, Benjamin S, Saranum MM, Chiang YF, Lee HL, Nazni WA, et al.
    Trop Biomed, 2005 Jun;22(1):39-43.
    PMID: 16880752
    Ovitrap surveillance was conducted in two urban residential areas (Taman Samudera Timur and Taman Samudera Selatan) and in a settlement area (Kampung Banjar), which is located 16 km from Kuala Lumpur city center, Malaysia. In Taman Samudera, dengue cases were reported monthly in 2003/2004. Thus, a study was initiated to determine the distribution and abundance of dengue vectors, Aedes aegypti and Ae. albopictus. The ovitrap surveillance indicated that Ae. aegypti and Ae. albopictus were present both indoors and outdoors. The residential sites had 73 - 79% of the ovitraps with just Ae. aegypti population and Kg. Banjar had 56% of the ovitraps with just Ae. aegypti. In the indoor and outdoor of the residential areas, together with the settlement area, the Ae. aegypti density was significantly more than Ae. albopictus (p < 0.05) by 3 - 50 folds. There was no significant difference in the larval numbers of Ae. aegypti between indoors and outdoors (p > 0.05), thus implicating that adult gravid female Ae. aegypti are present both indoors and outdoors and they do oviposit indoors and outdoors. Ae. aegypti can be incriminated as the principal dengue vector in the urban residential site, Taman Samudera and in the settlement area, Kg. Banjar.
    Matched MeSH terms: Dengue/epidemiology*
  16. Low GKK, Papapreponis P, Isa RM, Gan SC, Chee HY, Te KK, et al.
    Geospat Health, 2018 05 07;13(1):642.
    PMID: 29772885 DOI: 10.4081/gh.2018.642
    Increasing numbers of dengue infection worldwide have led to a rise in deaths due to complications caused by this disease. We present here a cross-sectional study of dengue patients who attended the Emergency and Trauma Department of Ampang Hospital, one of Malaysia's leading specialist hospitals. The objective was to search for potential clustering of severe dengue, in space and/or time, among the annual admissions with the secondary objective to describe the spatio-temporal pattern of all dengue cases admitted to this hospital. The dengue status of the patients was confirmed serologically with the geographic location of the patients determined by residency, but not more specific than the street level. A total of 1165 dengue patients were included in the analysis using SaTScan software. The mean age of these patients was 27.8 years, with a standard deviation of 14.2 years and an age range from 1 to 77 years, among whom 54 (4.6%) were cases of severe dengue. A cluster of general dengue cases was identified occurring from October to December in the study year of 2015 but the inclusion of severe dengue in that cluster was not statistically significant (P=0.862). The standardized incidence ratio was 1.51. General presence of dengue cases was, however, detected to be concentrated at the end of the year, which should be useful for hospital planning and management if this pattern holds.
    Matched MeSH terms: Dengue/epidemiology*
  17. Pang T, Gubler D, Goh DYT, Ismail Z, Asia Dengue Vaccine Advocacy Group
    Lancet, 2018 02 17;391(10121):654.
    PMID: 29617262 DOI: 10.1016/S0140-6736(18)30245-9
    Matched MeSH terms: Dengue/epidemiology
  18. Hussain-Alkhateeb L, Kroeger A, Olliaro P, Rocklöv J, Sewe MO, Tejeda G, et al.
    PLoS One, 2018;13(5):e0196811.
    PMID: 29727447 DOI: 10.1371/journal.pone.0196811
    BACKGROUND: Dengue outbreaks are increasing in frequency over space and time, affecting people's health and burdening resource-constrained health systems. The ability to detect early emerging outbreaks is key to mounting an effective response. The early warning and response system (EWARS) is a toolkit that provides countries with early-warning systems for efficient and cost-effective local responses. EWARS uses outbreak and alarm indicators to derive prediction models that can be used prospectively to predict a forthcoming dengue outbreak at district level.

    METHODS: We report on the development of the EWARS tool, based on users' recommendations into a convenient, user-friendly and reliable software aided by a user's workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico.

    FINDINGS: 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion.

    CONCLUSION: EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities.

    Matched MeSH terms: Dengue/epidemiology*
  19. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

    Matched MeSH terms: Dengue/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links