Displaying publications 81 - 100 of 166 in total

Abstract:
Sort:
  1. Sinduja B, Gowthaman NSK, John SA
    J Mater Chem B, 2020 10 28;8(41):9502-9511.
    PMID: 32996975 DOI: 10.1039/d0tb01681k
    In purine metabolism, the xanthine oxidoreductase enzyme converts hypoxanthine (HXN) to xanthine (XN) and XN to uric acid (UA). This leads to the deposition of UA crystals in several parts of the body and the serum UA level might be associated with various multifunctional disorders. The dietary intake of caffeine (CF) and ascorbic acid (AA) decreases the UA level in the serum, which leads to cellular damage. Hence, it is highly needed to monitor the UA level in the presence of AA, XN, HXN, and CF and vice versa. Considering this sequence of complications, the present paper reports the fabrication of an electrochemical sensor using low-cost N-doped carbon dots (CDs) for the selective and simultaneous determination of UA in the presence of AA, XN, HXN, and CF at the physiological pH. The colloidal solution of CDs was prepared by the pyrolysis of asparagine and fabricated on a GC electrode by cycling the potential from -0.20 to +1.2 V in a solution containing CDs and 0.01 M H2SO4. Here, the surface -NH2 functionalities of CDs were used to make a thin film of CDs on the GC electrode. FT-IR spectroscopy confirmed the involvement of the -NH2 group in the formation of the CD film. HR-TEM analysis depicts that the formed CDs showed spherical particles with a size of 1.67 nm and SEM analysis exhibits the 89 nm CD film on the GC electrode surface. The fabricated CD film was successfully used for the sensitive and selective determination of UA. The determination of UA was achieved selectively in a mixture consisting of AA, XN, HXN, and CF with 50-fold high concentration. The CDs-film fabricated electrode has several benefits over the bare electrode: (i) well-resolved oxidation peaks for five analytes, (ii) boosted sensitivity, (iii) shifted oxidation as well as on-set potentials toward less positive potentials, and (iv) high stability. The practical utility of the present sensor was tested by simultaneously determining the multifactorial disorders-causing agents in human fluids. The electrocatalyst developed in the present study is sustainable and can be used for multiple analyses; besides, the electrochemical method used for the fabrication of the CD film is environmentally benign.
    Matched MeSH terms: Electrochemical Techniques/economics; Electrochemical Techniques/instrumentation*
  2. Mahmoodi P, Rezayi M, Rasouli E, Avan A, Gholami M, Ghayour Mobarhan M, et al.
    J Nanobiotechnology, 2020 Jan 13;18(1):11.
    PMID: 31931815 DOI: 10.1186/s12951-020-0577-9
    BACKGROUND: In several years ago, infection with human papillomaviruses (HPVs), have been prevalent in the worlds especially HPV type 18, can lead to cervical cancer. Therefore, rapid, accurate, and early diagnosis of HPV for successful treatment is essential. The present study describes the development of a selective and sensitive electrochemical biosensor base on DNA, for early detection of HPV-18. For this purpose, a nanocomposite of reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) were electrodeposited on a screen-printed carbon electrode (SPCE). Then, Au nanoparticles (AuNPs) were dropped on a modified SPCE. Subsequently, single strand DNA (ssDNA) probe was immobilized on the modified electrode. The link attached between AuNPs and probe ssDNA provided by L-cysteine via functionalizing AuNPs (Cys-AuNPs). The differential pulse voltammetry (DPV) assay was also used to electrochemical measurement. The measurement was based on the oxidation signals of anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) before and after hybridization between the probe and target DNA.

    RESULTS: The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the proposed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical samples.

    CONCLUSIONS: According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensitive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.

    Matched MeSH terms: Electrochemical Techniques/methods*
  3. Lai CW, Lau KS, Chou PM
    J Nanosci Nanotechnol, 2019 Dec 01;19(12):7934-7942.
    PMID: 31196312 DOI: 10.1166/jnn.2019.16777
    Using solar-powered water electrolysis systems for hydrogen generation is a key decision for the development of a sustainable hydrogen economy. A facile approach is presented in the present investigation to improve the solar-powered photoelectrochemical performance of water electrolysis systems by synthesising well-aligned and highly ordered TiO₂ nanotube films without bundling through the electrochemical anodisation technique. Herein, geometrical calculations were conducted for all synthesised TiO₂ nanotubes, and determination of the aspect ratio (AR) and geometric surface area factor (G) was achieved. On the basis of the collected data, well-aligned TiO₂ nanotubes with an AR of approximately 60 and G of approximately 400 m² ·g-1 were successfully formed in an electrolyte mixture of ethylene glycol with 0.3 wt% NH4F and 5 wt% H₂O₂ at 40 V for 60 min. The nanotubes were subsequently annealed at 400 °C to form anatase-phase TiO₂ nanotube films. The resultant well-aligned and highly ordered TiO₂ nanotube films exhibited a photocurrent density of 1.5 mA · cm-2 due to a large number of photo-induced electrons moving along the tube axis and perpendicular to the Ti substrate, which greatly reduces interfacial recombination losses.
    Matched MeSH terms: Electrochemical Techniques
  4. Chai WL, Moharamzadeh K, van Noort R, Emanuelsson L, Palmquist A, Brook IM
    J Periodontal Res, 2013 Oct;48(5):663-70.
    PMID: 23442017 DOI: 10.1111/jre.12062
    Studies of peri-implant soft tissue on in vivo models are commonly based on histological sections prepared using undecalcified or 'fracture' techniques. These techniques require the cutting or removal of implant during the specimen preparation process. The aim of this study is to explore a new impression technique that does not require any cutting or removal of implant for contour analysis of soft tissue around four types of titanium (Ti) surface roughness using an in vitro three-dimensional oral mucosal model (3D OMM).
    Matched MeSH terms: Electrochemical Techniques
  5. Lah ZMANH, Ahmad SAA, Zaini MS, Kamarudin MA
    J Pharm Biomed Anal, 2019 Sep 10;174:608-617.
    PMID: 31265987 DOI: 10.1016/j.jpba.2019.06.024
    A facile electrochemical sandwich immunosensor for the detection of a breast cancer biomarker, the human epidermal growth factor receptor 2 (HER2), was designed, using lead sulfide quantum dots-conjugated secondary HER2 antibody (Ab2-PbS QDs) as a label. Using Ab2-PbS QDs in the development of electrochemical immunoassays leads to many advantages such as straightforward synthesis and well-defined stripping signal of Pb(II) through acid dissolution, which in turn yields better sensing performance for the sandwiched immunosensor. In the bioconjugation of PbS QDs, the available amine and hydroxyl groups from secondary anti-HER2 and capped PbS QDs were bound covalently together via carbonyldiimidazole (CDI) acting as a linker. In order to quantify the biomarker, SWV signal was obtained, where the Pb2+ ions after acid dissolution in HCl was detected. The plated mercury film SPCE was also detected in situ. Under optimal conditions, HER2 was detected in a linear range from 1-100 ng/mL with a limit of detection of 0.28 ng/mL. The measures of satisfactory recoveries were 91.3% to 104.3% for the spiked samples, displaying high selectivity. Therefore, this method can be applied to determine HER2 in human serum.
    Matched MeSH terms: Electrochemical Techniques*
  6. Saisahas K, Soleh A, Promsuwan K, Phonchai A, Mohamed Sadiq NS, Teoh WK, et al.
    J Pharm Biomed Anal, 2021 Feb 08;198:113958.
    PMID: 33662759 DOI: 10.1016/j.jpba.2021.113958
    A portable electrochemical sensor was developed to determine xylazine in spiked beverages by adsorptive stripping voltammetry (AdSV). The sensor was based on a graphene nanoplatelets-modified screen-printed carbon electrode (GNPs/SPCE). The electrochemical behavior of xylazine at the GNPs/SPCE was an adsorption-controlled irreversible oxidation reaction. The loading of graphene nanoplatelets (GNPs) on the modified SPCE, electrolyte pH, and AdSV accumulation potential and time were optimized. Under optimal conditions, the GNPs/SPCE provided high sensitivity, linear ranges of 0.4-6.0 mg L-1 (r = 0.997) and 6.0-80.0 mg L-1 (r = 0.998) with a detection limit of 0.1 mg L-1 and a quantitation limit of 0.4 mg L-1. Repeatability was good. The accuracy of the proposed sensor was investigated by spiking six beverage samples at 1.0, 5.0, and 10.0 mg L-1. The recoveries from this method ranged from 80.8 ± 0.2-108.1 ± 0.3 %, indicating the good accuracy of the developed sensor. This portable electrochemical sensor can be used to screen for xylazine in beverage samples as evidence in cases of sexual assault or robbery.
    Matched MeSH terms: Electrochemical Techniques
  7. Zahed FM, Hatamluyi B, Lorestani F, Es'haghi Z
    J Pharm Biomed Anal, 2018 Nov 30;161:12-19.
    PMID: 30142492 DOI: 10.1016/j.jpba.2018.08.004
    A highly efficient electrochemical sensor for the analysis of anticancer drug 5-fluorouracil (5-FU), is fabricated based on silver nanoparticles-polyaniline nanotube (AgNPs@PANINTs). AgNPs@PANINTs nanocomposite has been synthesized by a simple one-step method. Synthesized AgNPs@PANINTs nanocomposite was studied by Fourier transform infrared spectrometry, Scanning Electron Microscopy and Energy Dispersive X-ray. The fabricated PANINTs@AgNPs PGE was applied to the electrochemical sensing of 5-FU. Cyclic voltammetry and differential pulse voltammetry experiments illustrated high electro activity for the AgNPs@PANINTs nanocomposite. The study was explored using the Taguchi experimental design method. Electrochemical measurements using differential pulse voltammetry showed a wide linear relationship between 5-FU concentration and peak height within the range 1.0-300.0 μM with a low detection limit (0.06 μM). Also, the fabricated sensor showed excellent selectivity in the presence of two anticancer drugs and a number of other interfering compounds. The as-prepared sensor showed to be a promising device for a simple, rapid, and direct analysis of 5-FU.
    Matched MeSH terms: Electrochemical Techniques/instrumentation*
  8. Hani NM, Torkamani AE, Azarian MH, Mahmood KW, Ngalim SH
    J Sci Food Agric, 2017 Aug;97(10):3348-3358.
    PMID: 27981649 DOI: 10.1002/jsfa.8185
    BACKGROUND: Drumstick (Moringa oleifera) leaves have been used as a folk herbal medicine across many cultures since ancient times. This is most probably due to presence of phytochemicals possessing antioxidant properties, which could retard oxidative stress, and their degenerative effect. The current study deals with nanoencapsulation of Moringa oleifera (MO) leaf ethanolic extract within fish sourced gelatine matrix using electrospinning technique.

    RESULTS: The total phenolic and flavonoid content, radical scavenging (IC50 ) and metal reducing properties were 67.0 ± 2.5 mg GAE g-1 sample 32.0 ± 0.5 mg QE g-1 extract, 0.08 ± 0.01 mg mL-1 and 510 ± 10 µmol eq Fe(II) g-1 extract, respectively. Morphological and spectroscopic analysis of the fibre mats confirmed successful nanoencapsulation of MO extract within defect free nanofibres via electrospinning process. The percentage encapsulation efficiency (EE) was between 80% and 85%. Furthermore, thermal stability of encapsulated fibres, especially at 3% and 5% of core loading content, was significantly improved. Toxicological analysis revealed that the extract in its original and encapsulated form was safe for oral consumption.

    CONCLUSION: Overall, the present study showed the potential of ambient temperature electrospinning process as a safe nanoencapsulation method, where MO extract retained its antioxidative capacities. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Electrochemical Techniques
  9. Zambry NS, Awang MS, Beh KK, Hamzah HH, Bustami Y, Obande GA, et al.
    Lab Chip, 2023 Mar 14;23(6):1622-1636.
    PMID: 36786757 DOI: 10.1039/d2lc01159j
    The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per μL of the N gene within 5 minutes with a LOD of 0.50 μM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.
    Matched MeSH terms: Electrochemical Techniques
  10. Imran M, Ahmed S, Abdullah AZ, Hakami J, Chaudhary AA, Rudayni HA, et al.
    Luminescence, 2023 Jul;38(7):1064-1086.
    PMID: 36378274 DOI: 10.1002/bio.4408
    The penicillin derivative amoxicillin (AMX) plays an important role in treating various types of infections caused by bacteria. However, excessive use of AMX may have negative health effects. Therefore, it is of utmost importance to detect and quantify the AMX in pharmaceutical drugs, biological fluids, and environmental samples with high sensitivity. Therefore, this review article provides valuable and up-to-date information on nanostructured material-based optical and electrochemical sensors to detect AMX in various biological and chemical samples. The role of using different nanostructured materials on the performance of important optical sensors such as colorimetric sensors, fluorescence sensors, surface-enhanced Raman scattering sensors, chemiluminescence/electroluminescence sensors, optical immunosensors, optical fibre-based sensors, and several important electrochemical sensors based on different electrode types have been discussed. Moreover, nanocomposites, polymer, and MXenes-based electrochemical sensors have also been discussed, in which such materials are being used to further enhance the sensitivity of these sensors. Furthermore, nanocomposite-based photo-electrochemical sensors and the market availability of biosensors including AMX have also been discussed briefly. Finally, the conclusion, challenges, and future perspectives of the above-mentioned sensing techniques for AMX detection are presented.
    Matched MeSH terms: Electrochemical Techniques/methods
  11. Hajian R, Mehrayin Z, Mohagheghian M, Zafari M, Hosseini P, Shams N
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:769-775.
    PMID: 25687007 DOI: 10.1016/j.msec.2015.01.072
    In this study, an electrochemical sensor was fabricated based on gold nanoparticles/ ethylenediamine/ multi-wall carbon-nanotubes modified gold electrode (AuNPs/en/MWCNTs/AuE) for determination of valrubicin in biological samples. Valrubicin was effectively accumulated on the surface of AuNPs/en/MWCNTs/AuE and produced a pair of redox peaks at around 0.662 and 0.578V (vs. Ag/AgCl) in citrate buffer (pH4.0). The electrochemical parameters including pH, buffer, ionic strength, scan rate and size of AuNPs have been optimized. There was a good linear correlation between cathodic peak current and concentration of valrubicin in the range of 0.5 to 80.0μmolL(-1) with the detection limit of 0.018μmolL(-1) in citrate buffer (pH4.0) and 0.1molL(-1) KCl. Finally, the constructed sensor was successfully applied for determination of valrubicin in human urine and blood serum. In further studies, the different sequences of single stranded DNA probes have been immobilized on the surface of AuNPs decorated on MWCNTs to study the interaction of oligonucleotides with valrubicin.
    Matched MeSH terms: Electrochemical Techniques/methods
  12. Rashid JI, Yusof NA, Abdullah J, Hashim U, Hajian R
    PMID: 25491829 DOI: 10.1016/j.msec.2014.09.010
    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel.
    Matched MeSH terms: Electrochemical Techniques*
  13. Taniselass S, Md Arshad MK, Gopinath SCB
    Mater Sci Eng C Mater Biol Appl, 2019 Mar;96:904-914.
    PMID: 30606604 DOI: 10.1016/j.msec.2018.11.062
    Reduction of graphene oxide becomes an alternative way to produce a scalable graphene and the resulting nanomaterial namely reduced graphene oxide (rGO) has been utilized in a wide range of potential applications. In this article, the level of green reduction strategies, especially the solution-based reduction methods are overviewed based on recent progression, to get insights towards biomedical applications. The degrees of gaining tips with the solution-based green reduction methods, conditions, complexity and the resulting rGO characteristics have been elucidated comparatively. Moreover, the application of greenly produced rGO in electrochemical biosensors has been elucidated as well as their electrical performance in term of linear range and limit of detections for various healthcare biological analytes. In addition, the characterization scheme for graphene-based materials and the analyses on the reduction especially for the solution-based green reduction methods are outlined for the future endeavours.
    Matched MeSH terms: Electrochemical Techniques/methods*; Electrochemical Techniques/trends
  14. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Electrochemical Techniques/methods*
  15. Rashid JIA, Kannan V, Ahmad MH, Mon AA, Taufik S, Miskon A, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Jan;120:111625.
    PMID: 33545813 DOI: 10.1016/j.msec.2020.111625
    Multidrug resistant Pseudomonas aeruginosa (P. aeruginosa) is known to be a problematic bacterium for being a major cause of opportunistic and nosocomial infections. In this study, reduced graphene oxide decorated with gold nanoparticles (AuNPs/rGO) was utilized as a new sensing material for a fast and direct electrochemical detection of pyocyanin as a biomarker of P. aeruginosa infections. Under optimal condition, the developed electrochemical pyocyanin sensor exhibited a good linear range for the determination of pyocyanin in phosphate-buffered saline (PBS), human saliva and urine at a clinically relevant concentration range of 1-100 μM, achieving a detection limit of 0.27 μM, 1.34 μM, and 2.3 μM, respectively. Our developed sensor demonstrated good selectivity towards pyocyanin in the presence of interfering molecule such as ascorbic acid, uric acid, NADH, glucose, and acetylsalicylic acid, which are commonly found in human fluids. Furthermore, the developed sensor was able to discriminate the signal with and without the presence of pyocyanin directly in P. aeruginosa culture. This proposed technique demonstrates its potential application in monitoring the presence of P. aeruginosa infection in patients.
    Matched MeSH terms: Electrochemical Techniques
  16. Manan FAA, Hong WW, Abdullah J, Yusof NA, Ahmad I
    PMID: 30889711 DOI: 10.1016/j.msec.2019.01.082
    Novel biosensor architecture based on nanocrystalline cellulose (NCC)/CdS quantum dots (QDs) nanocomposite was developed for phenol determination. This nanocomposite was prepared with slight modification of nanocrystalline cellulose (NCC) with cationic surfactant of cetyltriammonium bromide (CTAB) and further decorated with 3-mercaptopropionic acid (3-MPA) capped CdS QDs. The nanocomposite material was then employed as scaffold for immobilization of tyrosinase enzyme (Tyr). The electrocatalytic response of Tyr/CTAB-NCC/QDs nanocomposite towards phenol was evaluated using differential pulse voltammetry (DPV). The current response obtained is proportional to the concentration of phenol which attributed to the reduction of o-quinone produced at the surface of the modified electrode. Under the optimal conditions, the biosensor exhibits good linearity towards phenol in the concentration range of 5-40 μM (R2 = 0.9904) with sensitivity and limit of detection (LOD) of 0.078 μA/μM and 0.082 μM, respectively.
    Matched MeSH terms: Electrochemical Techniques
  17. Yusoff N, Rameshkumar P, Mohamed Noor A, Huang NM
    Mikrochim Acta, 2018 04 03;185(4):246.
    PMID: 29616348 DOI: 10.1007/s00604-018-2782-x
    An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 μM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 μM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 μA·μM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 μM), and good sensitivity (0.092 μA μM-1 cm-2).
    Matched MeSH terms: Electrochemical Techniques/methods
  18. Letchumanan I, Gopinath SCB, Arshad MKM
    Mikrochim Acta, 2020 01 14;187(2):128.
    PMID: 31938893 DOI: 10.1007/s00604-020-4115-0
    A method is described for the electrochemical determination of squamous cell carcinoma (SCC) antigen, and by testing the effect of 30 nm gold nanoparticles (GNPs). Three comparative studies were performed in the presence and absence of GNPs, and with agglomerated GNPs. The divalent ion Ca(II) was used to induce a strong agglomeration of GNPs, as confirmed by colorimetry and voltammetry. Herein, colorimetry was used to test the best amount of salt needed to aggregate the GNPs. Despite, voltammetry was used to determine the status of biomolecules on the sensor. The topography of the surface of ZnO-coated interdigitated electrodes was analyzed by using 3D-nano profilometry, scanning electron microscopy, atomic force microscopy and high-power microscopy. The interaction between SCC antigen and antibody trigger vibrations on the sensor and cause dipole moment, which was measured using a picoammeter with a linear sweep from 0 to 2 V at 0.01 V step voltage. The sensitivity level was 10 fM by 3σ calculation for the dispersed GNP-conjugated antigen. This indicates a 100-fold enhancement compared to the condition without GNP conjugation. However, the sensitivity level for agglomerated GNPs conjugated antibody was not significant with 100 fM sensitivity. Specificity was tested for other proteins in serum, namely blood clotting factor IX, C-reactive protein, and serum albumin. The SCC antigen was quantified in spiked serum and gave recoveries that ranged between 80 and 90%. Graphical abstractSchematic representation of SCC (squamous cell carcinoma) antigen determination using divalent ion induced agglomerated GNPs. Sensitivity increment depends on the occurrence of more SCC antigen and antibody binding event via GNPs integration. Notably, lower detection limit was achieved at femto molar with proper orientation of biological molecules.
    Matched MeSH terms: Electrochemical Techniques
  19. Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, et al.
    Mikrochim Acta, 2020 04 12;187(5):266.
    PMID: 32279134 DOI: 10.1007/s00604-020-4218-7
    An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
    Matched MeSH terms: Electrochemical Techniques/instrumentation; Electrochemical Techniques/methods*
  20. Mohd Azmi UZ, Yusof NA, Abdullah J, Alang Ahmad SA, Mohd Faudzi FN, Ahmad Raston NH, et al.
    Mikrochim Acta, 2021 01 06;188(1):20.
    PMID: 33404779 DOI: 10.1007/s00604-020-04669-x
    An early detection of Mycobacterium tuberculosis is very important to reduce the number of fatal cases and allow for fast recovery. However, the interpretation of the result from smear microscopy requires skilled personnel due to the propensity of the method to produce false-negative results. In this work, a portable, rapid, and simple sandwich-type immunosensor reader has been developed that is able to detect the presence of M. tuberculosis in sputum samples. By using sandwich-type immunosensor, an anti-CFP10-ESAT6 antibody was immobilized onto the graphene/polyaniline (GP/PANI)-modified gold screen-printed electrode. After incubation with the target CFP10-ESAT6 antigen, the iron/gold magnetic nanoparticles (Fe3O4/Au MNPs) conjugated with anti-CFP10-ESAT6 antibody were used to complete the sandwich format. Differential pulse voltammetry (DPV) technique was used to detect the CFP10-ESAT6 antigen at the potential range of 0.0-1.0 V. The detection time is less than 2 h. Under optimal condition, CFP10-ESAT6 antigen was detected in a linear range from 10 to 500 ng mL-1 with a limit of detection at 1.5 ng mL-1. The method developed from this process was then integrated into a portable reader. The performance of the sensor was investigated and compared with the standard methods (culture and smear microscopy). It provides a good correlation (100% sensitivity and 91.7% specificity) with both methods of detection for M. tuberculosis in sputum samples henceforth, demonstrating the potential of the device as a more practical screening tool.Graphical abstract.
    Matched MeSH terms: Electrochemical Techniques/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links