Of the 92 Codonoboea species that occur in Peninsular Malaysia, 20 are recorded from the state of Terengganu, of which 9 are endemic to Terengganu including three new species, C. norakhirrudiniana Kiew, C. rheophytica Kiew and C. sallehuddiniana C.L.Lim, that are here described and illustrated. A key and checklist to all the Terengganu species are provided. The majority of species grow in lowland rain forest, amongst which C. densifolia and C. rheophytica are rheophytic. Only four grow in montane forest. The flora of Terengganu is still incompletely known, especially in the northern part of the state and in mountainous areas and so, with botanical exploration, more new species can be expected in this speciose genus.
Gunung Senyum Recreational Forest harbours 59 species, two subspecies and five varieties of mosses in 32 genera and 16 families that had been identified from a total of 589 specimens collected from the area. These figures represent 11.8% out of the 558 taxa, 20.2% out of the 158 genera and 34.7% out of the 46 families of mosses reported for Peninsular Malaysia. The total also represents 14.9% of the 442 taxa, 24.0% of the 133 genera and 40.0% of the 40 families of mosses recorded in Pahang. The largest family of mosses found in this limestone forest is Calymperaceae followed by Fissidentaceae. There are two new records for Pahang, Calymperespallidum Mitt. and Taxitheliumbinsteadii Broth. & Dixon. The analysis of species similarities of mosses found in the study area with some other selected areas showed that Gunung Senyum Recreational Forest had a high percentage of species similarity with Perlis State Park at Wang Kelian, another limestone forest, at 38%. Corticol is the main habitat utilised by mosses in Gunung Senyum Recreational Forest with 47 taxa, followed by the lignicol and calcicol each with 35 and 26 taxa, respectively.
Tropical peat forests are a globally important reservoir of carbon, but little is known about CO2 exchange on an annual basis. We measured CO2 exchange between the atmosphere and tropical peat swamp forest in Sarawak, Malaysia using the eddy covariance technique over 4 years from 2011 to 2014. The CO2 fluxes varied between seasons and years. A small carbon uptake took place during the rainy season at the beginning of 2011, while a substantial net efflux of >600 g C/m2 occurred over a 2 month period in the middle of the dry season. Conversely, the peat ecosystem was a source of carbon during both the dry and rainy seasons in subsequent years and more carbon was lost during the rainy season relative to the dry season. Our results demonstrate that the forest was a net source of CO2 to the atmosphere during every year of measurement with annual efflux ranging from 183 to 632 g C m-2 year-1 , noting that annual flux values were sensitive to gap filling methodology. This is in contrast to the typical view of tropical peat forests which must have acted as net C sinks over time scales of centuries to millennia to create the peat deposits. Path analyses revealed that the gross primary productivity (GPP) and ecosystem respiration (RE) were primarily affected by vapour pressure deficit (VPD). Results suggest that future increases in VPD could further reduce the C sink strength and result in additional net CO2 losses from this tropical peat swamp forest in the absence of plant acclimation to such changes in atmospheric dryness.
The bacterium Dyella sp. strain C9 was isolated from North Selangor Peat Swamp Forest, Malaysia, and studied using whole-genome sequencing. The putative genes involved in biogeochemical processes were annotated, and the genome sequence is publicly available in the NCBI database.
Need for regional economic development and global demand for agro-industrial commodities have resulted in large-scale conversion of forested landscapes to industrial agriculture across South East Asia. However, net emissions of CO2 from tropical peatland conversions may be significant and remain poorly quantified, resulting in controversy around the magnitude of carbon release following conversion. Here we present long-term, whole ecosystem monitoring of carbon exchange from two oil palm plantations on converted tropical peat swamp forest. Our sites compare a newly converted oil palm plantation (OPnew) to a mature oil palm plantation (OPmature) and combine them in the context of existing emission factors. Mean annual net emission (NEE) of CO2 measured at OPnew during the conversion period (137.8 Mg CO2 ha-1 year-1 ) was an order of magnitude lower during the measurement period at OPmature (17.5 Mg CO2 ha-1 year-1 ). However, mean water table depth (WTD) was shallower (0.26 m) than a typical drainage target of 0.6 m suggesting our emissions may be a conservative estimate for mature plantations, mean WTD at OPnew was more typical at 0.54 m. Reductions in net emissions were primarily driven by increasing biomass accumulation into highly productive palms. Further analysis suggested annual peat carbon losses of 24.9 Mg CO2 -C ha-1 year-1 over the first 6 years, lower than previous estimates for this early period from subsidence studies, losses reduced to 12.8 Mg CO2 -C ha-1 year-1 in the later, mature phase. Despite reductions in NEE and carbon loss over time, the system remained a large net source of carbon to the atmosphere after 12 years with the remaining 8 years of a typical plantation's rotation unlikely to recoup losses. These results emphasize the need for effective protection of tropical peatlands globally and strengthening of legislative enforcement where moratoria on peatland conversion already exist.
Soil hardness plays a vital role in evaluating the physical properties of soil structure. With regards to the impact of compaction on practical forest management issues, most report and review forms were available. Thus, the aim of this study was to evaluate the soil condition in riparian forest restoration planted with indigenous species along Kayan Ulu River with special reference to soil hardness. Soil hardness was measured by using Hasegawa-type cone penetrometer from the surface soils to 100 cm depth, with a total of 48 random points for both study sites surveyed; restoration sites planted with Shorea macrophylla in year 1996 and 1998 (SPD96 and SPD98, respectively) for both on and between planting lines. Our findings indicated that, soil hardness in SPD98 was harder as compared to SPD96 at shallow depth presented in one drop penetrability. Likewise, soil penetration resistance on planting line in SPD98 was significantly higher than SPD96 at surface soils (0-20 cm) and subsurface soils (20-40 cm). A high number of strikes and soil penetration resistance indicate that the soils were highly compacted. However, there was no significant difference in term of soil penetration resistance between planting line. In order to avoid effects on tree productivity, it is recommended that in future, the evaluation of soil hardness should be determined during the early establishment for future restoration of riparian ecosystem.
Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild.
Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area's bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas.
The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.
The study on the amphibian fauna of Bukit Jana, Taiping, Perak was carried out from January 2009 until December 2010 with a total of 12 nights of observation. Twenty four species of frogs from 14 genera and 6 families were recorded to inhabit the Bukit Jana areas. Seven commensal species were found around human habitations near the foothill whereas the others are typical forest frogs found mostly near the rivers, streams and forest floor. This is the first amphibian checklist of Bukit Jana, Perak and it contributed 22% out of 107 species of frogs that are recorded to inhabit Peninsular Malaysia.
A study of the bat diversity was conducted in Hulu Terengganu dipterocarp forest and Setiu Wetland Beach Ridges Interspersed with Swales (BRIS) forest in Terengganu, to study the species diversity, composition and stratification of fruit bats from the understorey to the forest canopy. Mist nets were set up at the understorey, sub-canopy and canopy layer while harp traps were set up at the understorey layer. We recorded 170 individuals from six families' compromised 21 species from Hulu Terengganu dipterocarp forests and four species from Setiu Wetland BRIS forests throughout the sampling period. Megaerops ecaudatus and Cynopterus brachyotis were the most dominant species in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forests. Our study also recorded two species with new distributional records for the east coast of Peninsular Malaysia, namely, Rhinolophus chiewkweeae and Chaerephon johorensis in Hulu Terengganu dipterocarp forests. Potential factors that might influence the results were in terms of the canopy covers, the structural complexity of canopy, food availability and spatial characteristics. This study was able to increase the knowledge on the species diversity and composition of bats in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forest, thus, further aid in the effort of bat conservation in both areas.
Mitragyna speciosa (Korth.) Havil. or locally known as ketum/daun sebiak/biak-biak belongs to Rubiaceae family and generally occurs in secondary forest or disturbed areas in tropical and subtropical region. This research enumerated the characterisation of Mitragyna speciosa leaf anatomy and micromorphology features which is still not well documented. This medium to large sized tree species characterised with opposite arrangement, ovate-acuminate leaf and with 12-17 pairs of veins. Transverse sections of petioles showed that this species has petiole outlines with slightly convex at the middle of the adaxial part and 'U'-shaped on abaxial side. Results also showed that this species has paracytic and hypostomatic stomata, combination of non-glandular (majority) and glandular trichomes (minority), with observation on the secretory cells present in petiole and midrib parenchyma cells. Cuticle on the abaxial and adaxial epidermal surfaces showed the presence granule and wax films with periclinal and anticlinal walls can be differentiated clearly. The results obtained in this study can be used to providing additional systematics information of Mitragyna speciosa with the documentation of the leaf anatomy and micromorphology characters.
Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.
Accurate estimation of tree biomass is necessary to provide realistic values of the carbon stored in the terrestrial biosphere. A recognized source of errors in tree aboveground biomass (AGB) estimation is introduced when individual tree height values (H) are not directly measured but estimated from diameter at breast height (DBH) using allometric equations. In this paper, we evaluate the performance of 12 alternative DBH : H equations and compare their effects on AGB estimation for three tropical forests that occur in contrasting climatic and altitudinal zones. We found that fitting a three-parameter Weibull function using data collected locally generated the lowest errors and bias in H estimation, and that equations fitted to these data were more accurate than equations with parameters derived from the literature. For computing AGB, the introduced error values differed notably among DBH : H allometric equations, and in most cases showed a clear bias that resulted in either over- or under-estimation of AGB. Fitting the three-parameter Weibull function minimized errors in AGB estimates in our study and we recommend its widespread adoption for carbon stock estimation. We conclude that many previous studies are likely to present biased estimates of AGB due to the method of H estimation.
In this research wok, three different techniques of change detection were used to detect changes in forest areas. One of the techniques used a local similarity measure approach to detect changes. This new approach of change detection technique, which used mutual information to measure the similarity between two multi-temporal images, was developed based on correspondence of the pixel values, rather than the difference in their intensity. Pixels suffering any changes will be maximally dissimilar. The study was conducted using multi-temporal SPOT 5 satellite images, with the resolution of 10 m x10 m on 5th August 2005 and 13th June 2007. The experimental results show that local mutual information provides more reliable results in detecting changes of the multitemporal images containing different lighting condition compared to the image differencing and NDVI technique, specifically in areas with less plant growth. In addition, it can also overcome the problem on selecting the threshold value. Besides, the findings of this study have also shown that band 3, which is sensitive to vegetation biomass, gave the best result in detecting area of changes compared to the others.
In recent years, there has been an increasing interest in quadcopter technology
implementation in the real world; for instance in real estate photography, aerial surveying, periodic
forest monitoring, and search/rescue missions. Generally, each quadcopter implementation required
different sensors which are needed to attach and integrate into quadcopter system. However, the most
critical part in almost cases is preparing the quadcopter flight performance and capability to be suited
in any outdoor applications. Because of that reason, this paper has proposed an implementation of
Open-Source Project (OSPs) platform as autonomous Unmanned Aerial Vehicle (UAV) quadcopter
development that can be fitted for any outdoor applications or even in research experimental purposes.
We started out with an explanation about the general approach that has been used in the development
of a quadcopter testbed, and then followed with detail explanations in the OSP platform approach.
The OSP platform is the most popular approach. The main reason is because of their flexibility in both
hardware and software. The basic quadcopter configuration for autonomous flight also presented and
applied. This paper also provided several outdoor experiments results in uncontrolled environment
that have been executed using our developed testbed to evaluate their performance, such as attitude
and altitude stabilization, interference and vibration effect, and trajectory mapping generation.
Finally, throughout this project, we realized that the OPSs quadcopter platform has offered almost
complete frameworks in the development of quadcopter for any outdoor applications or even as a
research testbed system.
We report the draft genome sequence of a bacterial isolate, Paraburkholderia sp. strain C35, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated and are publicly available in the online databases.
We report here the draft genome of Klebsiella sp. strain C31, a bacterial isolate from the North Selangor peat swamp forest in Malaysia. The putative genes for the biogeochemical processes of the genome were annotated and investigated.
We report here the draft genome sequences of a bacterial isolate, Dyella sp. strain C11, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated, and the genome was deposited in an online database.
Due to conservation and rehabilitation efforts, mangrove forests represent some of the largest environmental niches in Malaysia. However, there is little information on the potential risks posed by mosquitoes that are directly and indirectly associated with mangrove forests. To study the potential health risk to humans active within and in close vicinity of mangrove forests, this research focused on the day biting habits of mosquitoes in mangrove forests of Kedah, Malaysia. The bare leg catch (BLC) method was used to collect adult mosquitoes during a 12-h period from 7:30 a.m. to 7:30 p.m. in both disturbed and less disturbed areas of mangroves. In total, 795 adult mosquitoes from 5 genera and 8 species were collected, and over 65% of the total mosquitoes were collected from the less disturbed area. The predominant species from the less disturbed area was Verrallina butleri; in the disturbed area the dominant species was Culex sitiens. The peak biting hour differed for each species, with Aedes albopictus and Cx. sitiens recorded as having a bimodal biting activity peak during dawn and dusk. For Ve. butleri an erratic pattern of biting activity was recorded in the less disturbed area but it peaked during the early daytime for both collection points. Overall, the distinct pattern of day biting habits of mosquitoes within mangroves peaked during dawn and dusk for the less disturbed area but was irregular for the disturbed area throughout the day. The presence of vectors of pathogens such as Ae. albopictus for both areas raises the need for authorities to consider management of mosquitoes in mangrove forests.