Displaying publications 81 - 100 of 146 in total

Abstract:
Sort:
  1. Khan AW, Abdullah AH, Anisi MH, Bangash JI
    Sensors (Basel), 2014 Feb 05;14(2):2510-48.
    PMID: 24504107 DOI: 10.3390/s140202510
    Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink.
    Matched MeSH terms: Wireless Technology
  2. Khan MA, Hasbullah H, Nazir B, Khan IA
    ScientificWorldJournal, 2014;2014:785305.
    PMID: 25152924 DOI: 10.1155/2014/785305
    Recently, wireless sensor network (WSN) applications have seen an increase in interest. In search and rescue, battlefield reconnaissance, and some other such applications, so that a survey of the area of interest can be made collectively, a set of mobile nodes is deployed. Keeping the network nodes connected is vital for WSNs to be effective. The provision of connectivity can be made at the time of startup and can be maintained by carefully coordinating the nodes when they move. However, if a node suddenly fails, the network could be partitioned to cause communication problems. Recently, several methods that use the relocation of nodes for connectivity restoration have been proposed. However, these methods have the tendency to not consider the potential coverage loss in some locations. This paper addresses the concerns of both connectivity and coverage in an integrated way so that this gap can be filled. A novel algorithm for simultaneous-node repositioning is introduced. In this approach, each neighbour of the failed node, one by one, moves in for a certain amount of time to take the place of the failed node, after which it returns to its original location in the network. The effectiveness of this algorithm has been verified by the simulation results.
    Matched MeSH terms: Wireless Technology*
  3. Khan WZ, Aalsalem MY, Saad NM
    PLoS One, 2015;10(5):e0123069.
    PMID: 25992913 DOI: 10.1371/journal.pone.0123069
    Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.
    Matched MeSH terms: Wireless Technology/instrumentation*
  4. Khan ZA, Naz S, Khan R, Teo J, Ghani A, Almaiah MA
    Comput Intell Neurosci, 2022;2022:5112375.
    PMID: 35449734 DOI: 10.1155/2022/5112375
    Data redundancy or fusion is one of the common issues associated with the resource-constrained networks such as Wireless Sensor Networks (WSNs) and Internet of Things (IoTs). To resolve this issue, numerous data aggregation or fusion schemes have been presented in the literature. Generally, it is used to decrease the size of the collected data and, thus, improve the performance of the underlined IoTs in terms of congestion control, data accuracy, and lifetime. However, these approaches do not consider neighborhood information of the devices (cluster head in this case) in the data refinement phase. In this paper, a smart and intelligent neighborhood-enabled data aggregation scheme is presented where every device (cluster head) is bounded to refine the collected data before sending it to the concerned server module. For this purpose, the proposed data aggregation scheme is divided into two phases: (i) identification of neighboring nodes, which is based on the MAC address and location, and (ii) data aggregation using k-mean clustering algorithm and Support Vector Machine (SVM). Furthermore, every CH is smart enough to compare data sets of neighboring nodes only; that is, data of nonneighbor is not compared at all. These algorithms were implemented in Network Simulator 2 (NS-2) and were evaluated in terms of various performance metrics, such as the ratio of data redundancy, lifetime, and energy efficiency. Simulation results have verified that the proposed scheme performance is better than the existing approaches.
    Matched MeSH terms: Wireless Technology*
  5. Khasawneh AM, Kaiwartya O, Lloret J, Abuaddous HY, Abualigah L, Shinwan MA, et al.
    Sensors (Basel), 2020 Dec 18;20(24).
    PMID: 33353003 DOI: 10.3390/s20247278
    In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.
    Matched MeSH terms: Wireless Technology
  6. Mamman M, Hanapi ZM, Abdullah A, Muhammed A
    PLoS One, 2019;14(1):e0210310.
    PMID: 30682038 DOI: 10.1371/journal.pone.0210310
    The increasing demand for network applications, such as teleconferencing, multimedia messaging and mobile TV, which have diverse requirements, has resulted in the introduction of Long Term Evolution (LTE) by the Third Generation Partnership Project (3GPP). LTE networks implement resource allocation algorithms to distribute radio resource to satisfy the bandwidth and delay requirements of users. However, the scheduling algorithm problem of distributing radio resources to users is not well defined in the LTE standard and thus considerably affects transmission order. Furthermore, the existing radio resource algorithm suffers from performance degradation under prioritised conditions because of the minimum data rate used to determine the transmission order. In this work, a novel downlink resource allocation algorithm that uses quality of service (QoS) requirements and channel conditions to address performance degradation is proposed. The new algorithm is formulated as an optimisation problem where network resources are allocated according to users' priority, whereas the scheduling algorithm decides on the basis of users' channel status to satisfy the demands of QoS. Simulation is used to evaluate the performance of the proposed algorithm, and results demonstrate that it performs better than do all other algorithms according to the measured metrics.
    Matched MeSH terms: Wireless Technology
  7. Masud F, Abdullah AH, Abdul-Salaam G
    PLoS One, 2019;14(12):e0225518.
    PMID: 31790457 DOI: 10.1371/journal.pone.0225518
    This paper proposes an emergency Traffic Adaptive MAC (eTA-MAC) protocol for WBANs based on Prioritization. The main advantage of the protocol is to provide traffic ranking through a Traffic Class Prioritization-based slotted-Carrier Sense Multiple Access/Collision Avoidance (TCP-CSMA/CA) scheme. The emergency traffic is handled through Emergency Traffic Class Provisioning-based slotted-CSMA/CA (ETCP-CSMA/CA) scheme. The emergency-based traffic adaptivity is provided through Emergency-based Traffic Adaptive slotted-CSMA/CA (ETA-CSMA/CA) scheme. The TCP-CSMA/CA scheme assigns a distinct, minimized and prioritized backoff period range to each traffic class in every backoff during channel access in Contention Access Period (CAP). The ETCP-CSMA/CA scheme delivers the sporadic emergency traffic that occurs at a single or multiple BMSN(s) instantaneously, with minimum delay and packet loss. It does this while being aware of normal traffic in the CAP. Then, the ETA-CSMA/CA scheme creates a balance between throughput and energy in the sporadic emergency situation with energy preservation of normal traffic BMSNs. The proposed protocol is evaluated using NS-2 simulator. The results indicate that the proposed protocol is better than the existing Medium Access Control (MAC) protocols by 86% decrease in packet delivery delay, 61% increase in throughput, and a 76% decrease in energy consumption.
    Matched MeSH terms: Wireless Technology/instrumentation*
  8. Mohamed Moubark A, Ali SH
    ScientificWorldJournal, 2014;2014:107831.
    PMID: 25197687 DOI: 10.1155/2014/107831
    This paper presents a new practical QPSK receiver that uses digitized samples of incoming QPSK analog signal to determine the phase of the QPSK symbol. The proposed technique is more robust to phase noise and consumes up to 89.6% less power for signal detection in demodulation operation. On the contrary, the conventional QPSK demodulation process where it uses coherent detection technique requires the exact incoming signal frequency; thus, any variation in the frequency of the local oscillator or incoming signal will cause phase noise. A software simulation of the proposed design was successfully carried out using MATLAB Simulink software platform. In the conventional system, at least 10 dB signal to noise ratio (SNR) is required to achieve the bit error rate (BER) of 10(-6), whereas, in the proposed technique, the same BER value can be achieved with only 5 dB SNR. Since some of the power consuming elements such as voltage control oscillator (VCO), mixer, and low pass filter (LPF) are no longer needed, the proposed QPSK demodulator will consume almost 68.8% to 99.6% less operational power compared to conventional QPSK demodulator.
    Matched MeSH terms: Wireless Technology*
  9. Mohammad Yusof NAD, Karupiah K, Mohd Tamrin SB, Rasdi I, How V, Sambasivam S, et al.
    PLoS One, 2021;16(10):e0258796.
    PMID: 34665845 DOI: 10.1371/journal.pone.0258796
    Traffic police riders are exposed to prolonged static postures causing significant angular deviation of the musculoskeletal, including the lumbar angle (L1-L5). This postural alteration contributes to awkward posture, musculoskeletal disorders and spinal injury, especially in the lower back area, as it is one of the most severe modern diseases nowadays. Thus, the study aimed to evaluate the effect of lumbar support with a built-in massager system on spinal angle profiles among traffic police riders. A randomised controlled trial (pre-testpost-test control design) was used to assess spinal angle pattern while riding the high-powered motorcycle for 20 minutes. Twenty-four traffic police riders were randomly selected to participate and 12 riders were assigned to the control group and 12 riders to the experimental group. The pre-test and post-test were conducted at a one-week interval. Each participant was required to wear a TruPosture Smart Shirt (to monitor spinal posture). The TruPosture Apps recorded the spinal angle pattern. The data indicated that the police riders using motorcycle seat with lumbar support and built-in massager system showed a huge improvement in maintaining posture which only involves slight spinal angle deviation changes from the spinal reference angle throughout the 20 minutes ride. The data collected then were analysed using the Mann-Whitney test and Wilcoxon signed-ranked test to verify a statistically significant difference between and within the control and experimental groups. There were significant differences in all sensors between the control group and experimental groups (p<0.05) and within the experimental group. According to the findings, it can be said that the ergonomic intervention prototype (lumbar support with built-in massager system) successfully helps to maintain and improve the natural curve of the spinal posture. This indirectly would reduce the risk of developing musculoskeletal disorders and spinal injury among traffic police riders.
    Matched MeSH terms: Wireless Technology
  10. Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Alsalem MA, Albahri AS, et al.
    J Med Syst, 2019 Jun 11;43(7):223.
    PMID: 31187288 DOI: 10.1007/s10916-019-1362-x
    Remotely monitoring a patient's condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients' prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.
    Matched MeSH terms: Wireless Technology*
  11. Mohd Zaid Harith MZ, Mohamed Noor N, Idna Idris MY, Mohd Tamil E
    Sensors (Basel), 2018 Jul 19;18(7).
    PMID: 30029508 DOI: 10.3390/s18072344
    The majority of the Wireless Sensor Network (WSN) localization methods utilize a large number of nodes to achieve high localization accuracy. However, there are many unnecessary data redundancies that contributes to high computation, communication, and energy cost between these nodes. Therefore, we propose the Intersection and Complement Set (IACS) method to reduce these redundant data by selecting the most significant neighbor nodes for the localization process. Through duplication cleaning and average filtering steps, the proposed IACS selects the normal nodes with unique intersection and complement sets in the first and second hop neighbors to localize the unknown node. If the intersection or complement sets of the normal nodes are duplicated, IACS only selects the node with the shortest distance to the blind node and nodes that have total elements larger than the average of the intersection or complement sets. The proposed IACS is tested in various simulation settings and compared with MSL* and LCC. The performance of all methods is investigated using the default settings and a different number of degree of irregularity, normal node density, maximum velocity of sensor node and number of samples. From the simulation, IACS successfully reduced 25% of computation cost, 25% of communication cost and 6% of energy consumption compared to MSL*, while 15% of computation cost, 13% of communication cost and 3% of energy consumption compared to LCC.
    Matched MeSH terms: Wireless Technology
  12. Mohsin AH, Zaidan AA, Zaidan BB, Albahri AS, Albahri OS, Alsalem MA, et al.
    J Med Syst, 2018 Oct 16;42(12):238.
    PMID: 30327939 DOI: 10.1007/s10916-018-1104-5
    The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
    Matched MeSH terms: Wireless Technology
  13. Mukhlif F, Noordin KAB, Abdulghafoor OB, Izam TFTMN
    PLoS One, 2020;15(8):e0235953.
    PMID: 32841253 DOI: 10.1371/journal.pone.0235953
    The most crucial challenge in the functioning of the wireless networks is the efficient utilization of radio resources. A significant element of resource handling is power regulation. With increasing requirement of wireless data transmission services, it is essential to devise energy harvesting techniques for mobile devices. In this research, a new methodology has been proposed for distributed power regulation in cognitive radio, networks of CR are grounded on non-cooperation game phenomenon and pricing technique. QoS (Quality of service) of the user of CR is anticipated as a beneficial activity through pricing as well as dissemination of energy generating as an unbeneficial game wherein the consumers increase their overall efficacy. The price is defined as an actual function of transmission power to upraise the pricing of the most distant consumers. The proposed mathematical model shows that the proposed game model has a Nash equilibrium and is also unique. Furthermore, in order to make the proposed algorithm valid for green communication within the wireless network, the best response technique was proposed. Finally, simulation results showed that the proposed energy harvesting technique, grounded on a unique function of the utilization, reduces the consumption of transmission power and greatly improves the convergence speed; which are suitable for the vision of the 5G networks.
    Matched MeSH terms: Wireless Technology/economics*
  14. Mutashar S, Hannan MA, Samad SA, Hussain A
    Sensors (Basel), 2014;14(7):11522-41.
    PMID: 24984057 DOI: 10.3390/s140711522
    The use of wireless communication using inductive links to transfer data and power to implantable microsystems to stimulate and monitor nerves and muscles is increasing. This paper deals with the development of the theoretical analysis and optimization of an inductive link based on coupling and on spiral circular coil geometry. The coil dimensions offer 22 mm of mutual distance in air. However, at 6 mm of distance, the coils offer a power transmission efficiency of 80% in the optimum case and 73% in the worst case via low input impedance, whereas, transmission efficiency is 45% and 32%, respectively, via high input impedance. The simulations were performed in air and with two types of simulated human biological tissues such as dry and wet-skin using a depth of 6 mm. The performance results expound that the combined magnitude of the electric field components surrounding the external coil is approximately 98% of that in air, and for an internal coil, it is approximately 50%, respectively. It can be seen that the gain surrounding coils is almost constant and confirms the omnidirectional pattern associated with such loop antennas which reduces the effect of non-alignment between the two coils. The results also show that the specific absorption rate (SAR) and power loss within the tissue are lower than that of the standard level. Thus, the tissue will not be damaged anymore.
    Matched MeSH terms: Wireless Technology/instrumentation*
  15. Nasir J, Jamaluddin MH, Ahmad Khan A, Kamarudin MR, Yen BL, Owais O
    Sensors (Basel), 2017 Jan 13;17(1).
    PMID: 28098807 DOI: 10.3390/s17010148
    An L-shaped dual-band multiple-input multiple-output (MIMO) rectangular dielectric resonator antenna (RDRA) for long term evolution (LTE) applications is proposed. The presented antenna can transmit and receive information independently using fundamental TE111 and higher order TE121 modes of the DRA. TE111 degenerate mode covers LTE band 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz), and 9 (1.7499-1.7849 GHz) at fr = 1.8 GHz whereas TE121 covers LTE band 7 (2.5-2.69 GHz) at fr = 2.6 GHz, respectively. An efficient design method has been used to reduce mutual coupling between ports by changing the effective permittivity values of DRA by introducing a cylindrical air-gap at an optimal position in the dielectric resonator. This air-gap along with matching strips at the corners of the dielectric resonator keeps the isolation at a value more than 17 dB at both the bands. The diversity performance has also been evaluated by calculating the envelope correlation coefficient, diversity gain, and mean effective gain of the proposed design. MIMO performance has been evaluated by measuring the throughput of the proposed MIMO antenna. Experimental results successfully validate the presented design methodology in this work.
    Matched MeSH terms: Wireless Technology
  16. Nassiri Abrishamchi MA, Zainal A, Ghaleb FA, Qasem SN, Albarrak AM
    Sensors (Basel), 2022 Nov 07;22(21).
    PMID: 36366261 DOI: 10.3390/s22218564
    Smart home technologies have attracted more users in recent years due to significant advancements in their underlying enabler components, such as sensors, actuators, and processors, which are spreading in various domains and have become more affordable. However, these IoT-based solutions are prone to data leakage; this privacy issue has motivated researchers to seek a secure solution to overcome this challenge. In this regard, wireless signal eavesdropping is one of the most severe threats that enables attackers to obtain residents' sensitive information. Even if the system encrypts all communications, some cyber attacks can still steal information by interpreting the contextual data related to the transmitted signals. For example, a "fingerprint and timing-based snooping (FATS)" attack is a side-channel attack (SCA) developed to infer in-home activities passively from a remote location near the targeted house. An SCA is a sort of cyber attack that extracts valuable information from smart systems without accessing the content of data packets. This paper reviews the SCAs associated with cyber-physical systems, focusing on the proposed solutions to protect the privacy of smart homes against FATS attacks in detail. Moreover, this work clarifies shortcomings and future opportunities by analyzing the existing gaps in the reviewed methods.
    Matched MeSH terms: Wireless Technology
  17. Ng KJ, Islam MT, Alevy AM, Mansor MF
    Sensors (Basel), 2020 Apr 26;20(9).
    PMID: 32357426 DOI: 10.3390/s20092456
    This paper presents an ultralow profile, low passive intermodulation (PIM), and super-wideband in-building ceiling mount antenna that covers both the cellular and public safety ultra high frequency (UHF) band for distributed antenna system (DAS) applications. The proposed antenna design utilizes a modified 2-D planar discone design concept that is miniaturized to fit into a small disc-shaped radome. The 2-D planar discone has an elliptical-shaped disc monopole and a bell-shaped ground plane, a stub at the shorting path, with asymmetrical structure and an additional proximity coupling patch to maximize the available electrical path to support the 350 MHz band range. The proposed design maximizes the radome area with a reduction of about 62% compared to similar concept type antennas. Besides, the proposed design exhibits an improved radiation pattern with null reduction compared to a typical dipole/monopole when lies at the horizontal plane. A prototype was manufactured to demonstrate the antenna performance. The VSWR and radiation pattern results agreed with the simulated results. The proposed antenna achieves a band ratio of 28.57:1 while covering a frequency range of 350-10,000 MHz. The measured passive intermodulation levels are better than -150 dBc (2 × 20 Watts) for 350, 700 and 1920 MHz bands.
    Matched MeSH terms: Wireless Technology*
  18. Onwuegbuzie IU, Abd Razak S, Fauzi Isnin I, Darwish TSJ, Al-Dhaqm A
    PLoS One, 2020;15(8):e0237154.
    PMID: 32797055 DOI: 10.1371/journal.pone.0237154
    Data prioritization of heterogeneous data in wireless sensor networks gives meaning to mission-critical data that are time-sensitive as this may be a matter of life and death. However, the standard IEEE 802.15.4 does not consider the prioritization of data. Prioritization schemes proffered in the literature have not adequately addressed this issue as proposed schemes either uses a single or complex backoff algorithm to estimate backoff time-slots for prioritized data. Subsequently, the carrier sense multiple access with collision avoidance scheme exhibits an exponentially increasing range of backoff times. These approaches are not only inefficient but result in high latency and increased power consumption. In this article, the concept of class of service (CS) was adopted to prioritize heterogeneous data (real-time and non-real-time), resulting in an optimized prioritized backoff MAC scheme called Class of Service Traffic Priority-based Medium Access Control (CSTP-MAC). This scheme classifies data into high priority data (HPD) and low priority data (LPD) by computing backoff times with expressions peculiar to the data priority class. The improved scheme grants nodes the opportunity to access the shared medium in a timely and power-efficient manner. Benchmarked against contemporary schemes, CSTP-MAC attained a 99% packet delivery ratio with improved power saving capability, which translates to a longer operational lifetime.
    Matched MeSH terms: Wireless Technology*
  19. Pogorelov K, Suman S, Azmadi Hussin F, Saeed Malik A, Ostroukhova O, Riegler M, et al.
    J Appl Clin Med Phys, 2019 Aug;20(8):141-154.
    PMID: 31251460 DOI: 10.1002/acm2.12662
    Wireless capsule endoscopy (WCE) is an effective technology that can be used to make a gastrointestinal (GI) tract diagnosis of various lesions and abnormalities. Due to a long time required to pass through the GI tract, the resulting WCE data stream contains a large number of frames which leads to a tedious job for clinical experts to perform a visual check of each and every frame of a complete patient's video footage. In this paper, an automated technique for bleeding detection based on color and texture features is proposed. The approach combines the color information which is an essential feature for initial detection of frame with bleeding. Additionally, it uses the texture which plays an important role to extract more information from the lesion captured in the frames and allows the system to distinguish finely between borderline cases. The detection algorithm utilizes machine-learning-based classification methods, and it can efficiently distinguish between bleeding and nonbleeding frames and perform pixel-level segmentation of bleeding areas in WCE frames. The performed experimental studies demonstrate the performance of the proposed bleeding detection method in terms of detection accuracy, where we are at least as good as the state-of-the-art approaches. In this research, we have conducted a broad comparison of a number of different state-of-the-art features and classification methods that allows building an efficient and flexible WCE video processing system.
    Matched MeSH terms: Wireless Technology
  20. Radi M, Dezfouli B, Abu Bakar K, Abd Razak S
    ScientificWorldJournal, 2014;2014:789642.
    PMID: 24678277 DOI: 10.1155/2014/789642
    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.
    Matched MeSH terms: Wireless Technology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links