Displaying publications 101 - 120 of 412 in total

Abstract:
Sort:
  1. Hussain I, Jalil AA, Hamid MYS, Hassan NS
    Chemosphere, 2021 Aug;277:130285.
    PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285
    Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
  2. Nugraha MW, Zainal Abidin NH, Supandi, Sambudi NS
    Chemosphere, 2021 Aug;277:130300.
    PMID: 33774232 DOI: 10.1016/j.chemosphere.2021.130300
    In this present study, the tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composite has successfully been prepared through a simple mixing process. The WO3 was synthesized through a precipitation method, and CQDs were amino-functionalized using ethylenedinitrilotetraacetic acid (EDTA) and ethylenediamine (EDA) through one-pot hydrothermal method. It is revealed that N-CQDs incorporation into WO3 alters the bandgap energy, crystallinity, surface area, and photoluminescence (PL) properties. The produced composites exhibit higher monoclinic WO3 crystallinity, larger surface area, lower bandgap energy and quenched photoluminescence intensity. The as-prepared WO3/N-CQDs composites exhibit better adsorption and photocatalytic degradation performance of methylene blue (MB) than the pristine WO3. It shows that the combination of N-CQDs and WO3 enhanced visible light absorption, by lowering the bandgap energy of WO3 from 2.175 to 1.495 eV. The best performance composite is WO3/N-CQDs EDA 2.5% with an efficiency of 96.86%, removal rate constant of 0.02017/min, and chemical oxidation demand (COD) removal efficiency achieved 84.61%. Moreover, the WO3/N-CQDs EDA 2.5% shows a significant photocatalytic activity even at higher MB initial concentration with 92.93% removal for 50 ppm MB. Subsequently, the composite also has good stability after a sequential 3-times cycle of degradation with 86.85% removal. The increasing photocatalytic performance is affected by the quenching effect of PL and lower bandgap energy. The lower intensity of the PL indicates the reduced charge carrier recombination resulting in increased photocatalytic activity. The combination of N-CQDs and WO3 resulted in improved photodegradation, which shows its significant potential to be utilized for wastewater treatment.
  3. Liew CS, Kiatkittipong W, Lim JW, Lam MK, Ho YC, Ho CD, et al.
    Chemosphere, 2021 Aug;277:130310.
    PMID: 33774241 DOI: 10.1016/j.chemosphere.2021.130310
    Sewage sludge has long been regarded as a hazardous waste by virtue of the loaded heavy metals and pathogens. Recently, more advanced technologies are introduced to make use of the nutrients from this hazardous sludge. Successful recovery of sludge's carbon content could significantly convert waste to energy and promote energy sustainability. Meanwhile, the recovery of nitrogen and trace minerals allows the production of fertilizers. This review is elucidating the performances of modern thermal treatment technologies in recovering resources from sewage sludge while reducing its environmental impacts. Exhaustive investigations show that most modern technologies are capable of recovering sludge's carbon content for energy generation. Concurrently, the technologies could as well stabilize heavy metals, destroy harmful pathogens, and reduce the volume of sludge to minimize the environmental impacts. Nevertheless, the high initial investment cost still poses a huge hurdle for many developing countries. Since the initial investment cost is inevitable, the future works should focus on improving the profit margin of thermal technologies; so that it would be more financially attractive. This can be done through process optimization, improved process design as well as the use of suitable co-substrates, additives, and catalyst as propounded in the review.
  4. Oh WD, Zaeni JRJ, Lisak G, Lin KA, Leong KH, Choong ZY
    Chemosphere, 2021 Aug;277:130313.
    PMID: 33780679 DOI: 10.1016/j.chemosphere.2021.130313
    Engineered biochar is increasingly regarded as a cost-effective and eco-friendly peroxymonosulfate (PMS) activator. Herein, biochar doped with nitrogen and sulfur moieties was prepared by pyrolysis of wood shavings and doping precursor. The doping precursor consists of either urea, thiourea or 1:1 w/w mixture of urea and thiourea (denoted as NSB-U, NSB-T and NSB-UT, respectively). The physicochemical properties of the NSBs were extensively characterized, revealing that they are of noncrystalline carbon with porous structure. The NSBs were employed as PMS activator to degrade organic pollutants particularly methylene blue (MB). It was found that NSB-UT exhibited higher MB removal rate with kapp = 0.202 min-1 due to its relatively high surface area and favorable intrinsic surface moieties (combination of graphitic N and thiophenic S). The effects of catalyst loading, PMS dosage and initial pH were evaluated. Positive enhancement of the MB removal rate can be obtained by carefully increasing the catalyst loading or PMS dosage. Meanwhile, the MB removal rate is greatly influenced by pH due to electrostatic interactions and pH dependent reactions. The NSB-UT can be reused for several cycles to some extent and its catalytic activity can be restored by thermal treatment. Based on the radical scavenger study and XPS analysis, the nonradical pathway facilitated by the graphitic N and thiophenic S active sites are revealed to be the dominant reaction pathway. Overall, the results of this study show that engineered biochar derived from locally available biowaste can be transformed into PMS activator for environmental applications.
  5. Nhi-Cong LT, Lien DT, Mai CTN, Linh NV, Lich NQ, Ha HP, et al.
    Chemosphere, 2021 Sep;278:130464.
    PMID: 33845437 DOI: 10.1016/j.chemosphere.2021.130464
    Oil pollution which results from industrial activities, especially oil and gas industry, has become a serious issue. Cinder beats (CB), coconut fiber (CF) and polyurethane foam (PUF) are promising immobilization carriers for crude oil biodegradation because they are inexpensive, nontoxic, and non-polluting. The present investigation was aimed to evaluate this advanced technology and compare the efficiency of these immobilization carriers on supporting purple phototrophic bacterial (PPB) strains in hydrocarbon biodegradation of crude oil contaminated seawater. The surface of these biocarriers was supplemented with crude oil polluted seawater and immobilized by PPB strains, Rhodopseudomonas sp. DD4, DQ41 and FO2. Through scanning electron microscopy (SEM), the bacterial cells were shown to colonize and attach strongly to these biocarriers. The bacteria-driven carrier systems degraded over 84.2% supplemented single polycyclic aromatic hydrocarbons (PAHs). The aliphatic and aromatic components in crude oil that treated with carrier-immobilized consortia were degraded remarkably after 14 day-incubation. Among the three biocarriers, removal of the crude oil by CF-bacteria system was the highest (nearly 100%), followed by PUF-bacteria (89.5%) and CB-bacteria (86.3%) with the initial crude oil concentration was 20 g/L. Efficiency of crude oil removal by CB-bacteria and PUF-bacteria were 86.3 and 89.5%, respectively. Till now, the studies on crude oil degradation by mixture species biofilms formed by PPB on different carriers are limited. The present study showed that the biocarriers of an oil-degrading consortium could be made up of waste materials that are cheap and eco-friendly as well as augment the biodegradation of oil-contaminated seawater.
  6. Dawood S, Koyande AK, Ahmad M, Mubashir M, Asif S, Klemeš JJ, et al.
    Chemosphere, 2021 Sep;278:130469.
    PMID: 33839393 DOI: 10.1016/j.chemosphere.2021.130469
    The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.
  7. Cha JS, Jang SH, Lam SS, Kim H, Kim YM, Jeon BH, et al.
    Chemosphere, 2021 Sep;279:130521.
    PMID: 33866093 DOI: 10.1016/j.chemosphere.2021.130521
    Biochar was produced by the pyrolysis of Kraft lignin at 600 °C followed by modification with CO2 at 700 and 800 °C and impregnation with FeOx. The physicochemical properties and arsenic (V) adsorption performance of biochar were evaluated. The characteristics of the lignin biochar before and after CO2 modification and FeOx impregnation were analyzed using the following methods: proximate and ultimate analysis, specific surface area (Brunauer-Emmett-Teller (BET) surface area), porosity, scanning electron microscopy and energy dispersive spectroscopy mapping, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The specific surface area and porosity of biochar were improved significantly after CO2 modification. However, impregnation of FeOx in CO2-modified biochar showed a 50%-60% decrease of BET surface area and porosity due to pore blocking of FeOx. The batch adsorption of arsenic (V) showed that FeOx-LC-800 (FeOx impregnation lignin char modified with CO2 at 800 °C) had the highest adsorption efficiency among the biochars tested because of its highest Fe-O intensity and large surface area. The Langmuir adsorption model was suitable for the curve fitting arsenic (V) adsorption. The theoretical equilibrium adsorption amount (qe) was calculated to be 6.8 mg/g using a pseudo-second-order kinetic model.
  8. Li S, Tao Y, Li D, Wen G, Zhou J, Manickam S, et al.
    Chemosphere, 2021 Aug;276:130090.
    PMID: 33740651 DOI: 10.1016/j.chemosphere.2021.130090
    In this study, 4 Lactobacillus plantarum strains and 5 Lactobacillus fermentum strains adapting well to the unfavorable fruit system were isolated under different fruit environments. The fermentation ability of these autochthonous lactic acid bacteria (LAB) strains in blueberry juice, and the influence of microbial metabolism on juice composition were explored. After 48 h of fermentation, the viable cell counts exceeded 10.0 log CFU/mL, malic acid content decreased from 511.47 ± 10.50 mg/L to below 146.38 ± 3.79 mg/L, and lactic acid content increased from 0 mg/L to above 2184.90 ± 335.80 mg/L. Moreover, the metabolism of these strains exerted a profound influence on the phenolic composition of juice. Total phenolic content in blueberry juice increased by 6.1-81.2% under lactic acid fermentation, and the antioxidant capacity in vitro enhanced by at least 34.0%. Anthocyanin content showed a declining trend, while the profile of non-anthocyaninic phenolics exhibited complex changes. The increments of rutin, myricetin and gallic acid contents through 48 h lactic acid fermentation exceeded 136%, 71% and 38%, respectively. Instead, the contents of p-hydroxybenzoic acid and caffeic acid decreased with fermentation. Overall, Lactobacillus plantarum LSJ-TY-HYB-T9 and LSJ-TY-HYB-T7, and Lactobacillus fermentum LSJ-TY-HYB-C22 and LSJ-TY-HYB-L16 could be the suitable strains to produce fermented fruit juices, including blueberry in practical applications.
  9. Andreas, Hadibarata T, Sathishkumar P, Prasetia H, Hikmat, Pusfitasari ED, et al.
    Chemosphere, 2021 Aug;276:130185.
    PMID: 33743420 DOI: 10.1016/j.chemosphere.2021.130185
    Indonesia is the second-largest contributor of microplastics (MPs) pollution in the marine ecosystem. Most MPs pollution-related studies in Indonesia focus on seawater, sediment, with less information found on the commercially important fish species used for human consumption. Skipjack Tuna (Euthynnus affinis) is one of the major exporting fishery commodities from Indonesia. This exploratory study aimed to determine MPs presence in the digestive tract of Skipjack Tuna from the Southern Coast of Java, Indonesia. The fish samples were collected from five different fish traditional auction market along the Southern Coast of Java, Indonesia, namely Pangandaran, Pamayang Sari, Ciletuh, Santolo, and Palabuhan Ratu. The gastrointestinal tract of Skipjack tuna was pretreated using alkaline destruction and filtered. The presence of MPs in the treated samples was visually identified using an optical microscope, while Polybrominated diphenyl ethers (PBDEs) contaminants were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). A total of 19 suspected MPs particles were found in the form of filament (84%), angular (11%), and round (5%). This result would provide a better indication of the MPs contamination in marine life species in the Southern Coast of Java, Indonesia, as useful information for marine environmental monitoring program in the future.
  10. Ahmad MS, Ab Rahim MH, Alqahtani TM, Witoon T, Lim JW, Cheng CK
    Chemosphere, 2021 Aug;276:130128.
    PMID: 33714877 DOI: 10.1016/j.chemosphere.2021.130128
    Over the past decades, research efforts are being devoted into utilizing the biomass waste as a major source of green energy to maintain the economic, environmental, and social sustainability. Specifically, there is an emerging consensus on the significance of glycerol (an underutilised waste from biodiesel industry) as a cheap, non-toxic, and renewable source for valuable chemicals synthesis. There are numerous methods enacted to convert this glycerol waste to tartronic acid, mesoxalic acid, glyceraldehyde, dihydroxyacetone, oxalic acid and so on. Among these, the green electro-oxidation technique is one of the techniques that possesses potential for industrial application due to advantages such as non-toxicity process, fast response, and lower energy consumption. The current review covers the general understanding on commonly used techniques for alcohol (C1 & C2) conversion, with a specific insight on glycerol (C3) electro-oxidation (GOR). Since catalysts are the backbone of chemical reaction, they are responsible for the overall economy prospect of any processes. To this end, a comprehensive review on catalysts, which include noble metals, non-noble metals, and non-metals anchored over various supports are incorporated in this review. Moreover, a fundamental insight into the development of future electrocatalysts for glycerol oxidation along with products analysis is also presented.
  11. Ke B, Nguyen H, Bui XN, Bui HB, Choi Y, Zhou J, et al.
    Chemosphere, 2021 Aug;276:130204.
    PMID: 34088091 DOI: 10.1016/j.chemosphere.2021.130204
    Heavy metals in water and wastewater are taken into account as one of the most hazardous environmental issues that significantly impact human health. The use of biochar systems with different materials helped significantly remove heavy metals in the water, especially wastewater treatment systems. Nevertheless, heavy metal's sorption efficiency on the biochar systems is highly dependent on the biochar characteristics, metal sources, and environmental conditions. Therefore, this study implicates the feasibility of biochar systems in the heavy metal sorption in water/wastewater and the use of artificial intelligence (AI) models in investigating efficiency sorption of heavy metal on biochar. Accordingly, this work investigated and proposed 20 artificial intelligent models for forecasting the sorption efficiency of heavy metal onto biochar based on five machine learning algorithms and bagging technique (BA). Accordingly, support vector machine (SVM), random forest (RF), artificial neural network (ANN), M5Tree, and Gaussian process (GP) algorithms were used as the key algorithms for the aim of this study. Subsequently, the individual models were bagged with each other to generate new ensemble models. Finally, 20 intelligent models were developed and evaluated, including SVM, RF, M5Tree, GP, ANN, BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN. Of those, the hybrid models (i.e., BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN) are introduced as the novelty of this study for estimating the heavy metal's sorption efficiency on the biochar systems. Also, the biochar characteristics, metal sources, and environmental conditions were comprehensively assessed and used, and they are considered as a novelty of the study as well. For this aim, a dataset of sorption efficiency of heavy metal was collected and processed with 353 experimental tests. Various performance indexes were applied to evaluate the models, such as RMSE, R2, MAE, color intensity, Taylor diagram, box and whiskers plots. This study's findings revealed that AI models could predict heavy metal's sorption efficiency onto biochar with high reliability, and the efficiency of the ensemble models is higher than those of individual models. The results also reported that the SVM-ANN ensemble model is the most superior model among 20 developed models. The predictive model proposed that heavy metal's efficiency sorption on biochar can be accurately forecasted and early warning for the water pollution by heavy metal.
  12. Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, et al.
    Chemosphere, 2021 Aug;276:130162.
    PMID: 34088083 DOI: 10.1016/j.chemosphere.2021.130162
    Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.
  13. Vaezzadeh V, Thomes MW, Kunisue T, Tue NM, Zhang G, Zakaria MP, et al.
    Chemosphere, 2021 Jan;263:128272.
    PMID: 33297216 DOI: 10.1016/j.chemosphere.2020.128272
    Barnacles are ubiquitous in coastal ecosystems of different geographical regions worldwide. This is the first study attempting to assess the suitability of barnacles as bioindicators of persistent organic pollutants (POPs) in coastal environments. Barnacles were collected from the coasts around Peninsular Malaysia and analyzed for POPs including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs). Among POPs, PCBs showed the highest concentrations with elevated contributions of CB28 and CB153. As for PBDEs, BDE47 was the most frequently detected congener, while BDE209 was detected in barnacles from two stations in Port Klang and the levels reached up to >70% of total PBDE concentrations. Concentrations of OCPs detected in barnacles were in the order of CHLs > DDTs > HCHs > HCB and 4,4'-DDE and cis- and trans-chlordane were the predominant OCP compounds. A comparison with previous studies in Malaysia showed consistent levels of POPs. Green mussels collected from selected barnacles' habitats, for the sake of a comparison, showed almost similar profiles but lower concentrations of POPs. The spatial distribution of POPs observed in barnacles and comparison of POP levels and profiles with mussels indicated that barnacles can be useful bioindicators for monitoring POPs contamination in the coastal ecosystems.
  14. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, et al.
    Chemosphere, 2021 Oct;280:130601.
    PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601
    In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
  15. Thangamani GJ, Deshmukh K, Kovářík T, Nambiraj NA, Ponnamma D, Sadasivuni KK, et al.
    Chemosphere, 2021 Oct;280:130641.
    PMID: 33964741 DOI: 10.1016/j.chemosphere.2021.130641
    Over the last few decades, various volatile organic compounds (VOCs) have been widely used in the processing of building materials and this practice adversely affected the environment i.e. both indoor and outdoor air quality. A cost-effective solution for detecting a wide range of VOCs by sensing approaches includes chemiresistive, optical and electrochemical techniques. Room temperature (RT) chemiresistive gas sensors are next-generation technologies desirable for self-powered or battery-powered instruments utilized in monitoring emissions that are associated with indoor/outdoor air pollution and industrial processes. In this review, a state-of-the-art overview of chemiresistive gas sensors is provided based on their attractive analytical characteristics such as high sensitivity, selectivity, reproducibility, rapid assay time and low fabrication cost. The review mainly discusses the recent advancement and advantages of graphene oxide (GO) nanocomposites-based chemiresistive gas sensors and various factors affecting their sensing performance at RT. Besides, the sensing mechanisms of GO nanocomposites-based chemiresistive gas sensors derived using metals, transition metal oxides (TMOs) and polymers were discussed. Finally, the challenges and future perspectives of GO nanocomposites-based RT chemiresistive gas sensors are addressed.
  16. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
  17. Wang Y, Van Le Q, Yang H, Lam SS, Yang Y, Gu H, et al.
    Chemosphere, 2021 Oct;281:130835.
    PMID: 33992848 DOI: 10.1016/j.chemosphere.2021.130835
    The increase in global population size over the past 100 decades has doubled the requirements for energy resources. To mitigate the limited fossil fuel available, new clean energy sources being environmental sustainable for replacement of traditional energy sources are explored to supplement the current scarcity. Biomass containing lignin and cellulose is the main raw material to replace fossil energy given its abundance and lower emission of greenhouse gases and NOx when transformed into energy. Bacteria, fungi and algae decompose lignocellulose leading to generation of hydrogen, methane, bioethanol and biodiesel being the clean energy used for heating, power generation and the automobile industry. Microbial Fuel Cell (MFC) uses microorganisms to decompose biomass in wastewater to generate electricity and remove heavy metals in wastewater. Biomass contains cellulose, hemicellulose, lignin and other biomacromolecules which need hydrolyzation for conversion into small molecules by corresponding enzymes in order to be utilized by microorganisms. This paper discusses microbial decomposition of biomass into clean energy and the five major ways of clean energy production, and its economic benefits for future renewable energy security.
  18. Mohamad NA, Hamzah S, Che Harun MH, Ali A, Rasit N, Awang M, et al.
    Chemosphere, 2021 Oct;281:130873.
    PMID: 34022596 DOI: 10.1016/j.chemosphere.2021.130873
    Palm oil mill effluent (POME) is highly polluted wastewater that is to the environment if discharged directly to water source without proper treatment. Thus, a highly efficient treatment with reasonable cost is needed. This study reports the coagulation treatment of POME using integrated copperas and calcium hydroxide. The properties of copperas were determined using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and X-ray fluorescence (XRF). Coagulation was conducted using jar test experiments for various coagulant formulations and dosages (1000-5000 mg/L), initial pH (4-10), stirring speed (100-300 rpm), and sedimentation time (30-180 min). The characterisation results show that copperas has a compact gel network structure with strong O-H stretching and monoclinic crystal structure. The effectiveness of integrated copperas and calcium hydroxide (Ca(OH)2) with the formulation of 80:20 removed 77.6%, 73.4%, and 57.0% of turbidity, colour, and chemical oxygen demand (COD), respectively. Furthermore, the integration of copperas and Ca(OH)2 produced heavier flocs (ferric hydroxide), which improved gravity settling. The coagulation equilibrium analysis shows that the Langmuir model best described the anaerobic POME sample as the process exhibited monolayer adsorption. The results of this study show that copperas with the aid of Ca(OH)2 demonstrated high potential in the removal of those parameters from POME with acceptable final pH for discharge. The utilisation of this by-product as a coagulant in effluent treatment can unlock the potential of copperas for wider applications, improve its marketability, and reduce gypsum waste generation from the TiO2 industry.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links