Displaying publications 101 - 120 of 1459 in total

Abstract:
Sort:
  1. Rahman Z, Hashim F, Rasid MFA, Othman M
    PLoS One, 2018;13(6):e0197087.
    PMID: 29874237 DOI: 10.1371/journal.pone.0197087
    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26% of HH-VBF, 15% of VAPR, and 25% of H2DAB. Moreover, the average end-to-end delay has been reduced by 70% of VBF, 69% of HH-VBF, 46% of VAPR, and 73% of H2DAB. Furthermore, average hope-count has been improved by 57%, 53%, 16% and 31% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. Also, propagation delay has been reduced by 34%, 30%, 15% and 23% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively.
    Matched MeSH terms: Algorithms*
  2. Al-Mayouf YR, Ismail M, Abdullah NF, Wahab AW, Mahdi OA, Khan S, et al.
    PLoS One, 2016;11(11):e0165966.
    PMID: 27855165 DOI: 10.1371/journal.pone.0165966
    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.
    Matched MeSH terms: Algorithms*
  3. Hazim M, Anuar NB, Ab Razak MF, Abdullah NA
    PLoS One, 2018;13(6):e0198884.
    PMID: 29889897 DOI: 10.1371/journal.pone.0198884
    Product reviews are the individual's opinions, judgement or belief about a certain product or service provided by certain companies. Such reviews serve as guides for these companies to plan and monitor their business ventures in terms of increasing productivity or enhancing their product/service qualities. Product reviews can also increase business profits by convincing future customers about the products which they have interest in. In the mobile application marketplace such as Google Playstore, reviews and star ratings are used as indicators of the application quality. However, among all these reviews, hereby also known as opinions, spams also exist, to disrupt the online business balance. Previous studies used the time series and neural network approach (which require a lot of computational power) to detect these opinion spams. However, the detection performance can be restricted in terms of accuracy because the approach focusses on basic, discrete and document level features only thereby, projecting little statistical relationships. Aiming to improve the detection of opinion spams in mobile application marketplace, this study proposes using statistical based features that are modelled through the supervised boosting approach such as the Extreme Gradient Boost (XGBoost) and the Generalized Boosted Regression Model (GBM) to evaluate two multilingual datasets (i.e. English and Malay language). From the evaluation done, it was found that the XGBoost is most suitable for detecting opinion spams in the English dataset while the GBM Gaussian is most suitable for the Malay dataset. The comparative analysis also indicates that the implementation of the proposed statistical based features had achieved a detection accuracy rate of 87.43 per cent on the English dataset and 86.13 per cent on the Malay dataset.
    Matched MeSH terms: Algorithms*
  4. Hakak S, Kamsin A, Shivakumara P, Idna Idris MY, Gilkar GA
    PLoS One, 2018;13(7):e0200912.
    PMID: 30048486 DOI: 10.1371/journal.pone.0200912
    Exact pattern matching algorithms are popular and used widely in several applications, such as molecular biology, text processing, image processing, web search engines, network intrusion detection systems and operating systems. The focus of these algorithms is to achieve time efficiency according to applications but not memory consumption. In this work, we propose a novel idea to achieve both time efficiency and memory consumption by splitting query string for searching in Corpus. For a given text, the proposed algorithm split the query pattern into two equal halves and considers the second (right) half as a query string for searching in Corpus. Once the match is found with second halves, the proposed algorithm applies brute force procedure to find remaining match by referring the location of right half. Experimental results on different S1 Dataset, namely Arabic, English, Chinese, Italian and French text databases show that the proposed algorithm outperforms the existing S1 Algorithm in terms of time efficiency and memory consumption as the length of the query pattern increases.
    Matched MeSH terms: Algorithms*
  5. Nisar K, Sabir Z, Asif Zahoor Raja M, Ag Ibrahim AA, J P C Rodrigues J, Refahy Mahmoud S, et al.
    Sensors (Basel), 2021 Sep 29;21(19).
    PMID: 34640818 DOI: 10.3390/s21196498
    The aim of this work is to solve the case study singular model involving the Neumann-Robin, Dirichlet, and Neumann boundary conditions using a novel computing framework that is based on the artificial neural network (ANN), global search genetic algorithm (GA), and local search sequential quadratic programming method (SQPM), i.e., ANN-GA-SQPM. The inspiration to present this numerical framework comes through the objective of introducing a reliable structure that associates the operative ANNs features using the optimization procedures of soft computing to deal with such stimulating systems. Four different problems that are based on the singular equations involving Neumann-Robin, Dirichlet, and Neumann boundary conditions have been occupied to scrutinize the robustness, stability, and proficiency of the designed ANN-GA-SQPM. The proposed results through ANN-GA-SQPM have been compared with the exact results to check the efficiency of the scheme through the statistical performances for taking fifty independent trials. Moreover, the study of the neuron analysis based on three and 15 neurons is also performed to check the authenticity of the proposed ANN-GA-SQPM.
    Matched MeSH terms: Algorithms*
  6. Hussain S, Mustafa MW, Al-Shqeerat KHA, Saeed F, Al-Rimy BAS
    Sensors (Basel), 2021 Dec 17;21(24).
    PMID: 34960516 DOI: 10.3390/s21248423
    This study presents a novel feature-engineered-natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially executed in three stages: data pre-processing, feature engineering, and model evaluation. It utilized the random forest algorithm-based imputation technique initially to impute the missing data entries in the acquired smart meter dataset. In the second phase, the majority weighted minority oversampling technique (MWMOTE) algorithm was used to avoid an unequal distribution of data samples among different classes. The time-series feature-extraction library and whale optimization algorithm were utilized to extract and select the most relevant features from the kWh reading of consumers. Once the most relevant features were acquired, the model training and testing process was initiated by using the NGBoost algorithm to classify the consumers into two distinct categories ("Healthy" and "Theft"). Finally, each input feature's impact (positive or negative) in predicting the target variable was recognized with the tree SHAP additive-explanations algorithm. The proposed framework achieved an accuracy of 93%, recall of 91%, and precision of 95%, which was greater than all the competing models, and thus validated its efficacy and significance in the studied field of research.
    Matched MeSH terms: Algorithms*
  7. Ahmad Z, Jehangiri AI, Ala'anzy MA, Othman M, Umar AI
    Sensors (Basel), 2021 Oct 30;21(21).
    PMID: 34770545 DOI: 10.3390/s21217238
    Cloud computing is a fully fledged, matured and flexible computing paradigm that provides services to scientific and business applications in a subscription-based environment. Scientific applications such as Montage and CyberShake are organized scientific workflows with data and compute-intensive tasks and also have some special characteristics. These characteristics include the tasks of scientific workflows that are executed in terms of integration, disintegration, pipeline, and parallelism, and thus require special attention to task management and data-oriented resource scheduling and management. The tasks executed during pipeline are considered as bottleneck executions, the failure of which result in the wholly futile execution, which requires a fault-tolerant-aware execution. The tasks executed during parallelism require similar instances of cloud resources, and thus, cluster-based execution may upgrade the system performance in terms of make-span and execution cost. Therefore, this research work presents a cluster-based, fault-tolerant and data-intensive (CFD) scheduling for scientific applications in cloud environments. The CFD strategy addresses the data intensiveness of tasks of scientific workflows with cluster-based, fault-tolerant mechanisms. The Montage scientific workflow is considered as a simulation and the results of the CFD strategy were compared with three well-known heuristic scheduling policies: (a) MCT, (b) Max-min, and (c) Min-min. The simulation results showed that the CFD strategy reduced the make-span by 14.28%, 20.37%, and 11.77%, respectively, as compared with the existing three policies. Similarly, the CFD reduces the execution cost by 1.27%, 5.3%, and 2.21%, respectively, as compared with the existing three policies. In case of the CFD strategy, the SLA is not violated with regard to time and cost constraints, whereas it is violated by the existing policies numerous times.
    Matched MeSH terms: Algorithms*
  8. Wong YF, Ng HT, Leung KY, Chan KY, Chan SY, Loy CC
    J Biomed Inform, 2017 Oct;74:130-136.
    PMID: 28923366 DOI: 10.1016/j.jbi.2017.09.005
    OBJECTIVE: Oral pills, including tablets and capsules, are one of the most popular pharmaceutical dosage forms available. Compared to other dosage forms, such as liquid and injections, oral pills are very stable and are easy to be administered. However, it is not uncommon for pills to be misidentified, be it within the healthcare institutes or after the pills were dispensed to the patients. Our objective is to develop groundwork for automatic pill identification and verification using Deep Convolutional Network (DCN) that surpasses the existing methods.

    MATERIALS AND METHODS: A DCN model was developed using pill images captured with mobile phones under unconstraint environments. The performance of the DCN model was compared to two baseline methods of hand-crafted features.

    RESULTS: The DCN model outperforms the baseline methods. The mean accuracy rate of DCN at Top-1 return was 95.35%, whereas the mean accuracy rates of the two baseline methods were 89.00% and 70.65%, respectively. The mean accuracy rates of DCN for Top-5 and Top-10 returns, i.e., 98.75% and 99.55%, were also consistently higher than those of the baseline methods.

    DISCUSSION: The images used in this study were captured at various angles and under different level of illumination. DCN model achieved high accuracy despite the suboptimal image quality.

    CONCLUSION: The superior performance of DCN underscores the potential of Deep Learning model in the application of pill identification and verification.

    Matched MeSH terms: Algorithms*
  9. Mak WY, Ooi QX, Cruz CV, Looi I, Yuen KH, Standing JF
    Br J Clin Pharmacol, 2023 Jan;89(1):330-339.
    PMID: 35976674 DOI: 10.1111/bcp.15496
    AIM: nlmixr offers first-order conditional estimation (FOCE), FOCE with interaction (FOCEi) and stochastic approximation estimation-maximisation (SAEM) to fit nonlinear mixed-effect models (NLMEM). We modelled metformin's pharmacokinetic data using nlmixr and investigated SAEM and FOCEi's performance with respect to bias and precision of parameter estimates, and robustness to initial estimates.

    METHOD: Compartmental models were fitted. The final model was determined based on the objective function value and inspection of goodness-of-fit plots. The bias and precision of parameter estimates were compared between SAEM and FOCEi using stochastic simulations and estimations. For robustness, parameters were re-estimated as the initial estimates were perturbed 100 times and resultant changes evaluated.

    RESULTS: The absorption kinetics of metformin depend significantly on food status. Under the fasted state, the first-order absorption into the central compartment was preceded by zero-order infusion into the depot compartment, whereas for the fed state, the absorption into the depot was instantaneous followed by first-order absorption from depot into the central compartment. The means of relative mean estimation error (rMEE) ( ME E SAEM ME E FOCEi ) and rRMSE ( RMS E SAEM RMS E FOCEi ) were 0.48 and 0.35, respectively. All parameter estimates given by SAEM appeared to be narrowly distributed and were close to the true value used for simulation. In contrast, the distribution of estimates from FOCEi were skewed and more biased. When initial estimates were perturbed, FOCEi estimates were more biased and imprecise.

    DISCUSSION: nlmixr is reliable for NLMEM. SAEM was superior to FOCEi in terms of bias and precision, and more robust against initial estimate perturbations.

    Matched MeSH terms: Algorithms*
  10. Mohd Radzi SF, Hassan MS, Mohd Radzi MAH
    BMC Med Inform Decis Mak, 2022 Nov 24;22(1):306.
    PMID: 36434656 DOI: 10.1186/s12911-022-02050-x
    BACKGROUND: In healthcare area, big data, if integrated with machine learning, enables health practitioners to predict the result of a disorder or disease more accurately. In Autistic Spectrum Disorder (ASD), it is important to screen the patients to enable them to undergo proper treatments as early as possible. However, difficulties may arise in predicting ASD occurrences accurately, mainly caused by human errors. Data mining, if embedded into health screening practice, can help to overcome the difficulties. This study attempts to evaluate the performance of six best classifiers, taken from existing works, at analysing ASD screening training dataset.

    RESULT: We tested Naive Bayes, Logistic Regression, KNN, J48, Random Forest, SVM, and Deep Neural Network algorithms to ASD screening dataset and compared the classifiers' based on significant parameters; sensitivity, specificity, accuracy, receiver operating characteristic, area under the curve, and runtime, in predicting ASD occurrences. We also found that most of previous studies focused on classifying health-related dataset while ignoring the missing values which may contribute to significant impacts to the classification result which in turn may impact the life of the patients. Thus, we addressed the missing values by implementing imputation method where they are replaced with the mean of the available records found in the dataset.

    CONCLUSION: We found that J48 produced promising results as compared to other classifiers when tested in both circumstances, with and without missing values. Our findings also suggested that SVM does not necessarily perform well for small and simple datasets. The outcome is hoped to assist health practitioners in making accurate diagnosis of ASD occurrences in patients.

    Matched MeSH terms: Algorithms*
  11. Balla A, Habaebi MH, Elsheikh EAA, Islam MR, Suliman FM
    Sensors (Basel), 2023 Jan 09;23(2).
    PMID: 36679553 DOI: 10.3390/s23020758
    Integrating IoT devices in SCADA systems has provided efficient and improved data collection and transmission technologies. This enhancement comes with significant security challenges, exposing traditionally isolated systems to the public internet. Effective and highly reliable security devices, such as intrusion detection system (IDSs) and intrusion prevention systems (IPS), are critical. Countless studies used deep learning algorithms to design an efficient IDS; however, the fundamental issue of imbalanced datasets was not fully addressed. In our research, we examined the impact of data imbalance on developing an effective SCADA-based IDS. To investigate the impact of various data balancing techniques, we chose two unbalanced datasets, the Morris power dataset, and CICIDS2017 dataset, including random sampling, one-sided selection (OSS), near-miss, SMOTE, and ADASYN. For binary classification, convolutional neural networks were coupled with long short-term memory (CNN-LSTM). The system's effectiveness was determined by the confusion matrix, which includes evaluation metrics, such as accuracy, precision, detection rate, and F1-score. Four experiments on the two datasets demonstrate the impact of the data imbalance. This research aims to help security researchers in understanding imbalanced datasets and their impact on DL SCADA-IDS.
    Matched MeSH terms: Algorithms*
  12. Ehteram M, Panahi F, Ahmed AN, Huang YF, Kumar P, Elshafie A
    Environ Sci Pollut Res Int, 2022 Feb;29(7):10675-10701.
    PMID: 34528189 DOI: 10.1007/s11356-021-16301-3
    Evaporation is a crucial component to be established in agriculture management and water engineering. Evaporation prediction is thus an essential issue for modeling researchers. In this study, the multilayer perceptron (MLP) was used for predicting daily evaporation. MLP model is as one of the famous ANN models with multilayers for predicting different target variables. A new strategy was used to enhance the accuracy of the MLP model. Three multi-objective algorithms, namely, the multi-objective salp swarm algorithm (MOSSA), the multi-objective crow algorithm (MOCA), and the multi-objective particle swarm optimization (MOPSO), were respectively and separately coupled to the MLP model for determining the model parameters, the best input combination, and the best activation function. In this study, three stations in Malaysia, namely, the Muadzam Shah (MS), the Kuala Terengganu (KT), and the Kuantan (KU), were selected for the prediction of the respective daily evaporation. The spacing (SP) and maximum spread (MS) indices were used to evaluate the quality of generated Pareto front (PF) by the algorithms. The lower SP and higher MS showed better PF for the models. It was observed that the MOSSA had higher MS and lower SP than the other algorithms, at all stations. The root means square error (RMSE), mean absolute error (MAE), percent bias (PBIAS), and Nash Sutcliffe efficiency (NSE) quantifiers were used to compare the ability of the models with each other. The MLP-MOSSA had reduced RMSE compared to the MLP-MOCA, MLP-MOPSO, and MLP models by 18%, 25%, and 35%, respectively, at the MS station. The MAE of the MLP-MOSSA was 2.7%, 4.1%, and 26%, respectively lower than those of the MLP-MOCA, MLP-MOPSO, and MLP models at the KU station. The MLP-MOSSA showed lower MAE than the MLP-MOCA, MLP-MOPSO, and MLP models by 16%, 18%, and 19%, respectively, at the KT station. An uncertainty analysis was performed based on the input and parameter uncertainty. The results indicated that the MLP-MOSSA had the lowest uncertainty among the models. Also, the input uncertainty was lower than the parameter uncertainty. The general results indicated that the MLP-MOSSA had the high efficiency for predicting evaporation.
    Matched MeSH terms: Algorithms*
  13. Vivekanandhan G, Abdolmohammadi HR, Natiq H, Rajagopal K, Jafari S, Namazi H
    Math Biosci Eng, 2023 Jan;20(3):4760-4781.
    PMID: 36896521 DOI: 10.3934/mbe.2023220
    Human evolution is carried out by two genetic systems based on DNA and another based on the transmission of information through the functions of the nervous system. In computational neuroscience, mathematical neural models are used to describe the biological function of the brain. Discrete-time neural models have received particular attention due to their simple analysis and low computational costs. From the concept of neuroscience, discrete fractional order neuron models incorporate the memory in a dynamic model. This paper introduces the fractional order discrete Rulkov neuron map. The presented model is analyzed dynamically and also in terms of synchronization ability. First, the Rulkov neuron map is examined in terms of phase plane, bifurcation diagram, and Lyapunov exponent. The biological behaviors of the Rulkov neuron map, such as silence, bursting, and chaotic firing, also exist in its discrete fractional-order version. The bifurcation diagrams of the proposed model are investigated under the effect of the neuron model's parameters and the fractional order. The stability regions of the system are theoretically and numerically obtained, and it is shown that increasing the order of the fractional order decreases the stable areas. Finally, the synchronization behavior of two fractional-order models is investigated. The results represent that the fractional-order systems cannot reach complete synchronization.
    Matched MeSH terms: Algorithms*
  14. Ali GA, Abubakar H, Alzaeemi SAS, Almawgani AHM, Sulaiman A, Tay KG
    PLoS One, 2023;18(9):e0286874.
    PMID: 37747876 DOI: 10.1371/journal.pone.0286874
    This study proposes a novel hybrid computational approach that integrates the artificial dragonfly algorithm (ADA) with the Hopfield neural network (HNN) to achieve an optimal representation of the Exact Boolean kSatisfiability (EBkSAT) logical rule. The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EBkSAT logic representation. To assess the performance of the proposed hybrid computational model, a specific Exact Boolean kSatisfiability problem is constructed, and simulated data sets are generated. The evaluation metrics employed include the global minimum ratio (GmR), root mean square error (RMSE), mean absolute percentage error (MAPE), and network computational time (CT) for EBkSAT representation. Comparative analyses are conducted between the results obtained from the proposed model and existing models in the literature. The findings demonstrate that the proposed hybrid model, ADA-HNN-EBkSAT, surpasses existing models in terms of accuracy and computational time. This suggests that the ADA algorithm exhibits effective compatibility with the HNN for achieving an optimal representation of the EBkSAT logical rule. These outcomes carry significant implications for addressing intricate optimization problems across diverse domains, including computer science, engineering, and business.
    Matched MeSH terms: Algorithms*
  15. Naderipour A, Davoudkhani IF, Abdul-Malek Z
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71726-71740.
    PMID: 34472027 DOI: 10.1007/s11356-021-16072-x
    The reactive power control of a power system is discussed under two types of variables: continuous variables (e.g., generator bus voltages) and discrete variables (e.g., transformer taps and the size of switched shunt capacitors). This paper proposes a novel and powerful algorithm, named turbulent flow of water-based optimization (TFWO) as well as a new improved version of this algorithm, called θ-TFWO, for optimal reactive power distribution (ORPD) to reduce losses. The proposed method is applied to two large-scale IEEE 57-bus systems. Furthermore, to demonstrate the competitive performance of the suggested algorithm, its performance was compared to that of several other algorithms, including biogeography-based optimization (BBO), social spider algorithm (SSA), and optics inspired optimization (OIO), in terms of solving the ORPD problem. The results confirmed the robustness and effectiveness of the proposed method as a powerful optimizer applicable to optimal reactive power distribution in power systems.
    Matched MeSH terms: Algorithms*
  16. Naderipour A, Abdul-Malek Z, Davoodkhani IF, Kamyab H, Ali RR
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71677-71688.
    PMID: 34241794 DOI: 10.1007/s11356-021-14799-1
    Due to the increased complexity and nonlinear nature of microgrid systems such as photovoltaic, wind-turbine fuel cell, and energy storage systems (PV/WT/FC/ESSs), load-frequency control has been a challenge. This paper employs a self-tuning controller based on the fuzzy logic to overcome parameter uncertainties of classic controllers, such as operation conditions, the change in the operating point of the microgrid, and the uncertainty of microgrid modeling. Furthermore, a combined fuzzy logic and fractional-order controller is used for load-frequency control of the off-grid microgrid with the influence of renewable resources because the latter controller benefits robust performance and enjoys a flexible structure. To reach a better operation for the proposed controller, a novel meta-heuristic whale algorithm has been used to optimally determine the input and output scale coefficients of the fuzzy controller and fractional orders of the fractional-order controller. The suggested approach is applied to a microgrid with a diesel generator, wind turbine, photovoltaic systems, and energy storage devices. The comparison made between the results of the proposed controller and those of the classic PID controller proves the superiority of the optimized fractional-order self-tuning fuzzy controller in terms of operation characteristics, response speed, and the reduction in frequency deviations against load variations.
    Matched MeSH terms: Algorithms*
  17. Bichi AA, Samsudin R, Hassan R, Hasan LRA, Ado Rogo A
    PLoS One, 2023;18(5):e0285376.
    PMID: 37159449 DOI: 10.1371/journal.pone.0285376
    Automatic text summarization is one of the most promising solutions to the ever-growing challenges of textual data as it produces a shorter version of the original document with fewer bytes, but the same information as the original document. Despite the advancements in automatic text summarization research, research involving the development of automatic text summarization methods for documents written in Hausa, a Chadic language widely spoken in West Africa by approximately 150,000,000 people as either their first or second language, is still in early stages of development. This study proposes a novel graph-based extractive single-document summarization method for Hausa text by modifying the existing PageRank algorithm using the normalized common bigrams count between adjacent sentences as the initial vertex score. The proposed method is evaluated using a primarily collected Hausa summarization evaluation dataset comprising of 113 Hausa news articles on ROUGE evaluation toolkits. The proposed approach outperformed the standard methods using the same datasets. It outperformed the TextRank method by 2.1%, LexRank by 12.3%, centroid-based method by 19.5%, and BM25 method by 17.4%.
    Matched MeSH terms: Algorithms*
  18. Zehra S, Faseeha U, Syed HJ, Samad F, Ibrahim AO, Abulfaraj AW, et al.
    Sensors (Basel), 2023 Jun 05;23(11).
    PMID: 37300067 DOI: 10.3390/s23115340
    Network function virtualization (NFV) is a rapidly growing technology that enables the virtualization of traditional network hardware components, offering benefits such as cost reduction, increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor and IoT networks by ensuring optimal resource usage and effective network management. However, adopting NFV in these networks also brings security challenges that must promptly and effectively address. This survey paper focuses on exploring the security challenges associated with NFV. It proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-based algorithms for detecting network-based anomalies in NFV networks. By providing insights into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this study aims to assist network administrators and security professionals in enhancing the security of NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.
    Matched MeSH terms: Algorithms*
  19. Budati AK, Islam S, Hasan MK, Safie N, Bahar N, Ghazal TM
    Sensors (Basel), 2023 May 25;23(11).
    PMID: 37299798 DOI: 10.3390/s23115072
    The global expansion of the Visual Internet of Things (VIoT)'s deployment with multiple devices and sensor interconnections has been widespread. Frame collusion and buffering delays are the primary artifacts in the broad area of VIoT networking applications due to significant packet loss and network congestion. Numerous studies have been carried out on the impact of packet loss on Quality of Experience (QoE) for a wide range of applications. In this paper, a lossy video transmission framework for the VIoT considering the KNN classifier merged with the H.265 protocols. The performance of the proposed framework was assessed while considering the congestion of encrypted static images transmitted to the wireless sensor networks. The performance analysis of the proposed KNN-H.265 protocol is compared with the existing traditional H.265 and H.264 protocols. The analysis suggests that the traditional H.264 and H.265 protocols cause video conversation packet drops. The performance of the proposed protocol is estimated with the parameters of frame number, delay, throughput, packet loss ratio, and Peak Signal to Noise Ratio (PSNR) on MATLAB 2018a simulation software. The proposed model gives 4% and 6% better PSNR values than the existing two methods and better throughput.
    Matched MeSH terms: Algorithms*
  20. Mohd Romlay MR, Mohd Ibrahim A, Toha SF, De Wilde P, Venkat I
    PLoS One, 2021;16(8):e0256665.
    PMID: 34432855 DOI: 10.1371/journal.pone.0256665
    Low-end LiDAR sensor provides an alternative for depth measurement and object recognition for lightweight devices. However due to low computing capacity, complicated algorithms are incompatible to be performed on the device, with sparse information further limits the feature available for extraction. Therefore, a classification method which could receive sparse input, while providing ample leverage for the classification process to accurately differentiate objects within limited computing capability is required. To achieve reliable feature extraction from a sparse LiDAR point cloud, this paper proposes a novel Clustered Extraction and Centroid Based Clustered Extraction Method (CE-CBCE) method for feature extraction followed by a convolutional neural network (CNN) object classifier. The integration of the CE-CBCE and CNN methods enable us to utilize lightweight actuated LiDAR input and provides low computing means of classification while maintaining accurate detection. Based on genuine LiDAR data, the final result shows reliable accuracy of 97% through the method proposed.
    Matched MeSH terms: Algorithms*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links