Displaying publications 101 - 120 of 166 in total

Abstract:
Sort:
  1. Polgar G, Zaccara S, Babbucci M, Fonzi F, Antognazza CM, Ishak N, et al.
    J Fish Biol, 2017 May;90(5):1926-1943.
    PMID: 28239874 DOI: 10.1111/jfb.13276
    A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  2. Chan LL, Mak JW, Ambu S, Chong PY
    PLoS One, 2018;13(10):e0204732.
    PMID: 30356282 DOI: 10.1371/journal.pone.0204732
    The detection and identification of two endocytobiotic bacterial strains, one affiliated to the "Candidatus Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba", and another to the endosymbiont of Acanthamoeba UWC8 and "Ca. Jidaibacter acanthamoeba" are described. For endocytobiont screening, we developed a PCR method with a set of broad-range bacterial 16S rRNA primers to substitute the commonly used but technically demanding fluorescent in situ hybridization technique. Our PCR test alone without sequencing failed to discriminate the endocytobiont-containing and endocytobiont-free Acanthamoeba sp. due to the presence of mismatched primers to host mitochondrial DNA. We highlighted the need to perform bacterial primer checking against the Acanthamoeba genome to avoid false positive detection in PCR. Although the genetic aspect of "Ca. Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba" and the endosymbiont of Acanthamoeba UWC8/"Ca. Jidaibacter acanthamoeba" are well studied, knowledge pertaining to their morphologies are quite vague. Hence, we used transmission electron microscopy to examine our endocytobionts which are affiliated to previously described intracellular bacteria of Acanthamoeba sp. We used good-quality TEM images for the localization and the fate of the current endocytobionts inside different life stages of the hosts. Furthermore, to the best of our knowledge, our TEM findings are the first to provide morphological evidence for the clearance of defective Acanthamoeba endocytobionts via an autophagic-like process.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  3. Ishar SM, Parameswaran K, Masduki NS, Rus Din RD
    PMID: 31709874 DOI: 10.1080/24701394.2019.1687693
    DNA variations are alterations found in DNA sequence, occurring in both nuclear DNA and mitochondrial DNA. Variations might differ in individual following population, respectively. The aim of this study was to find variations in target sequence of mtDNA (16000-16200) to be used as marker in Malay and Chinese population. A total of 30 buccal swab samples from 20 Malay and 10 Chinese subjects were collected and preserved on FTA card. The FTA card that contained DNA sample was punched to be included into polymerase chain reaction mixture. Amplification was carried out and the products were sequenced. Sequence variations were found in both Malay and Chinese populations. A total of nine variations (16129, 16108, 16162, 16172, 16148, 16127, 16173, 16099 and 16100) were found in Malay population while a total of seven variations (16129, 16104, 16111, 16109, 16164, 16170 and 16136) were found in Chinese population. Nucleotide position 16129 was found as variation in both Malay and Chinese populations. This study implies that np 16129 can be used as a marker for Malaysian population. For further investigation, the length of the target sequence may be increased to obtain more variations that can be used as markers. This will increase the discrimination power of Malaysian population.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  4. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, Bruyn M, Carvalho GR
    J Fish Biol, 2020 Feb;96(2):337-349.
    PMID: 31721192 DOI: 10.1111/jfb.14202
    We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  5. Dusfour I, Linton YM, Cohuet A, Harbach RE, Baimai V, Trung HD, et al.
    J Med Entomol, 2004 May;41(3):287-95.
    PMID: 15185927
    Anopheles sundaicus s.l. is a principal malaria vector taxon on islands and along the coastal areas of Southeast Asia. It has a wide geographical distribution and exhibits a high level of ecological and behavioral variability. Study of this taxon is crucial for understanding its biology and implementing effectise vector control measures. We compared populations of An. sundaicus from Vietnam, Thailand, and Malaysian Borneo by using two mitochondrial DNA markers: cytochrome oxidase I and cytochrome b. Genetic divergence, geographic separation, and cladistic analysis of relationships revealed the presence of two cryptic species: Anopheles sundaicus s.s. on Malaysian Borneo and An. sundaicus species A in coastal areas of Thailand and Vietnam. A polymerase chain reaction (PCR) assay was developed to easily identify these two species throughout their geographic distributions. The assay was based on sequence characterized amplified region derived from random amplified polymorphic DNA. This PCR identification method needs to be validated and adapted for the recognition of other possible species in the Sundaicus Complex.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  6. Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S
    Planta, 2020 Feb 01;251(2):57.
    PMID: 32008119 DOI: 10.1007/s00425-020-03349-7
    MAIN CONCLUSION: The rice leaf mitochondrial DNA is  more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be  more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  7. Matsui M, Nishikawa K, Eto K, Hossman MY
    Zoolog Sci, 2020 Feb;37(1):91-101.
    PMID: 32068378 DOI: 10.2108/zs190078
    Two lineages of stream toads in the genus Ansonia from Malaysian Borneo have long been suspected to be specifically distinct on the basis of molecular data. We assessed the taxonomic status of these lineages using morphological and additional genetic data. In mtDNA phylogeny, each lineage-one from Bario, Kelabit Highlands of Sarawak, the other from Mt. Mulu of Sarawak and the Crocker Range of Sabah-is separated from other congeners by large genetic distances, comparable with those observed between heterospecific species in the genus. These lineages are also morphologically distinguishable from other species, and are considered to represent valid, independently evolving species. We therefore describe them as A. kelabitensis sp. nov. and A. kanak sp. nov.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  8. Eamsobhana P, Yong HS, Roongruangchai K, Tungtrongchitr A, Wanachiwanawin D
    Trop Biomed, 2020 Jun 01;37(2):536-541.
    PMID: 33612820
    Two female and one male adult hookworms were recovered from a female patient in Thailand. Based on gross and microscopic morphology, the three hookworms are members of Necator americanus. Phylogenetic reconstruction based on partial NADH dehydrogenase subunit 1 (nad1) mitochondrial gene sequences shows that these hookworms belong to the same genetic lineage as N. americanus adult worm from Zhejiang, China. The male and female hookworms were genetically distinct, belonging to two different nad1-haplotypes. This is the first report targeting the nad1 gene on the identification and genetic characterization of the human hookworms originated from infected patient. The nad1 gene marker is useful for species and higher taxa differentiation of hookworms.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  9. Yong HS, Chua KO, Song SL, Liew YJ, Eamsobhana P, Chan KG
    Mol Biol Rep, 2021 Aug;48(8):6047-6056.
    PMID: 34357549 DOI: 10.1007/s11033-021-06608-2
    BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank.

    METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific.

    CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.

    Matched MeSH terms: DNA, Mitochondrial/genetics
  10. Shen KN, Loh KH, Chen CH, Hsiao CD
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4122-4123.
    PMID: 25585497
    In this study, the complete mitogenome sequence of the Blue-face angelfish, Pomacanthus xanthometapon (Perciformes: Pomacanthidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consisting of 16,533 bp includes 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Blue-face angelfish is 28.7% for A, 28.9% for C, 15.9% for G, 26.6% for T and show 84% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Blue-face angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  11. Krzemińska U, Morales HE, Greening C, Nyári ÁS, Wilson R, Song BK, et al.
    Heredity (Edinb), 2018 04;120(4):296-309.
    PMID: 29180719 DOI: 10.1038/s41437-017-0020-7
    The House Crow (Corvus splendens) is a useful study system for investigating the genetic basis of adaptations underpinning successful range expansion. The species originates from the Indian subcontinent, but has successfully spread through a variety of thermal environments across Asia, Africa and Europe. Here, population mitogenomics was used to investigate the colonisation history and to test for signals of molecular selection on the mitochondrial genome. We sequenced the mitogenomes of 89 House Crows spanning four native and five invasive populations. A Bayesian dated phylogeny, based on the 13 mitochondrial protein-coding genes, supports a mid-Pleistocene (~630,000 years ago) divergence between the most distant genetic lineages. Phylogeographic patterns suggest that northern South Asia is the likely centre of origin for the species. Codon-based analyses of selection and assessments of changes in amino acid properties provide evidence of positive selection on the ND2 and ND5 genes against a background of purifying selection across the mitogenome. Protein homology modelling suggests that four amino acid substitutions inferred to be under positive selection may modulate coupling efficiency and proton translocation mediated by OXPHOS complex I. The identified substitutions are found within native House Crow lineages and ecological niche modelling predicts suitable climatic areas for the establishment of crow populations within the invasive range. Mitogenomic patterns in the invasive range of the species are more strongly associated with introduction history than climate. We speculate that invasions of the House Crow have been facilitated by standing genetic variation that accumulated due to diversifying selection within the native range.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  12. Gray HWI, Nishida S, Welch AJ, Moura AE, Tanabe S, Kiani MS, et al.
    Mol Phylogenet Evol, 2018 05;122:1-14.
    PMID: 29294405 DOI: 10.1016/j.ympev.2017.12.027
    Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new 'aduncus' type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  13. Lim KC, Then AY, Wee AKS, Sade A, Rumpet R, Loh KH
    Sci Rep, 2021 Jul 21;11(1):14874.
    PMID: 34290296 DOI: 10.1038/s41598-021-94257-7
    The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  14. Lim PE, Tan J, Eamsobhana P, Yong HS
    Sci Rep, 2013 Oct 17;3:2977.
    PMID: 24131999 DOI: 10.1038/srep02977
    The phylogenetic relationships of some taxa in the Platycnemidinae at the species and generic levels have been investigated. Phylogenetic trees were generated from both individual mitochondrial encoded COI, COII, 16S rDNA and nuclear encoded 28S rDNA and also combined sequences; these data indicate that the component taxa of the genus Copera belong to two distinct genetic clades - the marginipes group and the annulata group. There was no distinct genetic difference between the red-legged and yellow-legged morphs of C. vittata. Molecular data showed that the annulata group is considered a member of the genus Platycnemis, as originally proposed. The genus Coeliccia, a member of the subfamily Calicnemiinae (Platycnemididae), is not grouped with the Platycnemidinae. The Disparoneurinae of the 'Protoneuridae' showed a closer relationship to the Platycnemidinae than the Calicnemiinae. The dataset supports the placement of the Disparoneurinae as a subfamily of the Platycnemididae. This resolves the monophyly of Platycnemididae.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  15. Marquez JG, Bangs MJ, Krafsur ES
    Med Vet Entomol, 2003 Dec;17(4):429-35.
    PMID: 14651658
    Houseflies (Musca domestica L., Diptera: Muscidae) are cosmopolitan, colonizing, and eusynanthropic. Their distribution in the Malaysian archipelago provides an opportunity to study successive waves of colonization and extinction during the Pleistocene and Recent epochs. We scored single-strand conformation polymorphisms (SSCPs) at 16S2 and COII mitochondrial loci in 47 housefly samples from the Australian, Austro-Malayan, Indo-Malayan, Manchurian and Indo-Chinese subregions of Wallace's zoogeographical classification. We discuss the results in light of the Pleistocene vs. post-Pleistocene dispersal and faunal exchange in the Asia-Pacific area. Fourteen haplotypes were detected, of which 10 were confined to a single subregion. No haplotype was ubiquitous and only one was found in four subregions. Population diversity, HS, was greatest in the Indo-Malayan (0.36) and heterogeneous among subregions. The mean subregional diversity was 0.21 +/- 0.03, representing the probability that two randomly chosen flies, from any subregion, had different haplotypes. The hierarchical partition of diversity indicated restricted maternal gene flow among subregions (GRT = 0.60, Nm approximately 0.32). These results suggest long-standing genetic isolation of houseflies in the Malaysian archipelago and support the hypothesis that they dispersed widely during the Pleistocene. Haplotypes common among mainland populations but shared with island groups in low frequencies (<1%) indicate surprisingly little recent gene flow.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  16. Sharma R, Goossens B, Heller R, Rasteiro R, Othman N, Bruford MW, et al.
    Sci Rep, 2018 01 17;8(1):880.
    PMID: 29343863 DOI: 10.1038/s41598-017-17042-5
    The origin of the elephant on the island of Borneo remains elusive. Research has suggested two alternative hypotheses: the Bornean elephant stems either from a recent introduction in the 17th century or from an ancient colonization several hundreds of thousands years ago. Lack of elephant fossils has been interpreted as evidence for a very recent introduction, whereas mtDNA divergence from other Asian elephants has been argued to favor an ancient colonization. We investigated the demographic history of Bornean elephants using full-likelihood and approximate Bayesian computation analyses. Our results are at odds with both the recent and ancient colonization hypotheses, and favour a third intermediate scenario. We find that genetic data favour a scenario in which Bornean elephants experienced a bottleneck during the last glacial period, possibly as a consequence of the colonization of Borneo, and from which it has slowly recovered since. Altogether the data support a natural colonization of Bornean elephants at a time when large terrestrial mammals could colonise from the Sunda shelf when sea levels were much lower. Our results are important not only in understanding the unique history of the colonization of Borneo by elephants, but also for their long-term conservation.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  17. Tan J, Lim PE, Phang SM, Hong DD, Sunarpi H, Hurtado AQ
    PLoS One, 2012;7(12):e52905.
    PMID: 23285223 DOI: 10.1371/journal.pone.0052905
    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  18. Lah EF, Ahamad M, Haron MS, Ming HT
    Asian Pac J Trop Biomed, 2012 Mar;2(3):223-7.
    PMID: 23569902 DOI: 10.1016/S2221-1691(12)60046-X
    OBJECTIVE: To establish a polymerase chain reaction (PCR) technique based on cytochrome b (cytb) gene of mitochondria DNA (mtDNA) for blood meal identification.

    METHODS: The PCR technique was established based on published information and validated using blood sample of laboratory animals of which their whole gene sequences are available in GenBank. PCR was next performed to compile gene sequences of different species of wild rodents. The primers used were complementary to the conserved region of the cytb gene of vertebrate's mtDNA. A total of 100 blood samples, both from laboratory animals and wild rodents were collected and analyzed. The obtained unknown sequences were compared with those in the GenBank database using BLAST program to identify the vertebrate animal species.

    RESULTS: Gene sequences of 11 species of wild animals caught in 9 localities of Peninsular Malaysia were compiled using the established PCR. The animals involved were Rattus (rattus) tanezumi, Rattus tiomanicus, Leopoldamys sabanus, Tupaia glis, Tupaia minor, Niviventor cremoriventor, Rhinosciurus laticaudatus, Callosciurus caniseps, Sundamys muelleri, Rattus rajah and Maxomys whiteheadi. The BLAST results confirmed the host with exact or nearly exact matches (>89% identity). Ten new gene sequences have been deposited in GenBank database since September 2010.

    CONCLUSIONS: This study indicates that the PCR direct sequencing system using universal primer sets for vertebrate cytb gene is a promising technique for blood meal identification.

    Matched MeSH terms: DNA, Mitochondrial/genetics
  19. Iwagami M, Ho LY, Su K, Lai PF, Fukushima M, Nakano M, et al.
    J Helminthol, 2000 Dec;74(4):315-22.
    PMID: 11138020
    The lung fluke, Paragonimus westermani (Kerbert, 1878), is widely distributed in Asia, and exhibits much variation in its biological properties. Previous phylogenetic studies using DNA sequences have demonstrated that samples from north-east Asia form a tight group distinct from samples from south Asia (Philippines, Thailand, Malaysia). Among countries from the latter region, considerable molecular diversity was observed. This was investigated further using additional DNA sequences (partial mitochondrial cytochrome c oxidase subunit 1 (COI) and the second internal transcribed spacer of the nuclear ribosomal gene repeat (ITS2)) from additional samples of P. westermani. Phylogenies inferred from these again found three or four groups within P. westermani, depending on the method of analysis. Populations of P. westermani from north-east Asia use snail hosts of the family Pleuroceridae and differ in other biological properties from populations in south Asia (that use snail hosts of the family Thiaridae). It is considered that the populations we sampled can be divided into two species, one in north-east Asia and the other in south Asia.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  20. Low VL, Adler PH, Takaoka H, Ya'cob Z, Lim PE, Tan TK, et al.
    PLoS One, 2014;9(6):e100512.
    PMID: 24941043 DOI: 10.1371/journal.pone.0100512
    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links