Displaying publications 101 - 120 of 138 in total

Abstract:
Sort:
  1. Cecilia D, Gould EA
    Virology, 1991 Mar;181(1):70-7.
    PMID: 1704661
    The Sarawak strain of Japanese encephalitis virus (JE-Sar) is virulent in 3-week-old mice when inoculated intraperitoneally. The nucleotide sequence for the envelope glycoprotein (E) of this virus was determined and compared with the published sequences of four other strains. There were several silent nucleotide differences and five codon changes. Monoclonal antibodies (MAbs) against the E protein of JE-Sar virus were prepared and characterized. MAb-resistant mutants of JE-Sar were selected to determine if mutations in the E protein gene could affect its virulence for mice. Eight mutants were isolated using five different MAbs that identified virus-specific or group-reactive epitopes on the E protein. The mutants lost either complete or partial reactivity with selecting MAb. Several showed decreased virulence in 3-week-old mice after intraperitoneal inoculation. Two (r27 and r30) also showed reduced virulence in 2-week-old mice. JE-Sar and the derived mutants were comparable in their virulence for mice, when inoculated intracranially. Mutant r30 but not r27 induced protective immunity in adult mice against intracranial challenge with parent virus. However, r27-2 did induce protective immunity against itself. Nucleotide sequencing of the E coding region for the mutants revealed single base changes in both r30 and r27 resulting in a predicted change from isoleucine to serine at position 270 in r30 and from glycine to aspartic acid at position 333 in r27. The altered capacity of the mutants to induce protective immunity is consistent with the immunogenicity changes predicted by computer analysis using the Protean II program.
    Matched MeSH terms: Epitopes/analysis
  2. Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, et al.
    Int J Mol Sci, 2021 Feb 15;22(4).
    PMID: 33672018 DOI: 10.3390/ijms22041922
    Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
    Matched MeSH terms: Immunodominant Epitopes/immunology*
  3. Chong HY, Leow CY, Leow CH
    Int J Biol Macromol, 2021 Aug 31;185:485-493.
    PMID: 34174313 DOI: 10.1016/j.ijbiomac.2021.06.146
    Co-existence of Japanese Encephalitis virus (JEV) with highly homologous antigenic epitopes results in antibody-based serodiagnosis being inaccurate at detecting and distinguishing JEV from other flaviviruses. This often causes misdiagnosis and inefficient treatments of flavivirus infection. Generation of JEV NS1 protein remains a challenge as it is notably expressed in the form of inactive aggregates known as inclusion bodies using bacterial expression systems. This study evaluated two trxB and gor E. coli strains in producing soluble JEV NS1 via a cold-shock expression system. High yield of JEV NS1 inclusion bodies was produced using cold-shocked expression system. Subsequently, a simplified yet successful approach in generating soluble, active JEV NS1 protein through solubilization, purification and in vitro refolding of JEV NS1 protein from inclusion bodies was developed. A step-wise dialysis refolding approach was used to facilitate JEV NS1 refolding. The authenticity of the refolded JEV NS1 was confirmed by specific antibody binding on indirect ELISA commercial anti-NS1 antibodies which showed that the refolded JEV NS1 was highly immunoreactive. This presented approach is cost-effective, and negates the need for mammalian or insect cell expression systems in order to synthesize this JEV NS1 protein of important diagnostic and therapeutic relevance in Japanese Encephalitis disease.
    Matched MeSH terms: Epitopes/immunology
  4. Chee Wei T, Nurul Wahida AG, Shaharum S
    Trop Biomed, 2014 Dec;31(4):792-801.
    PMID: 25776606 MyJurnal
    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.
    Matched MeSH terms: Epitopes/genetics
  5. Zainal N, Tan KK, Johari J, Hussein H, Wan Musa WR, Hassan J, et al.
    Microbiol. Immunol., 2018 Oct;62(10):659-672.
    PMID: 30259549 DOI: 10.1111/1348-0421.12652
    Dengue is the most prevalent mosquito-borne disease in Southeast Asia, where the incidence of systemic lupus erythematosus (SLE) is approximately 30 to 53 per 100,000. Severe dengue, however, is rarely reported among individuals with SLE. Here, whether sera of patients with SLE cross-neutralize dengue virus (DENV) was investigated. Serum samples were obtained from individuals with SLE who were dengue IgG and IgM serology negative. Neutralization assays were performed against the three major DENV serotypes. Of the dengue serology negative sera of individuals with SLE, 60%, 61% and 52% of the sera at 1/320 dilution showed more than 50% inhibition against dengue type-1 virus (DENV-1), DENV-2 and DENV-3, respectively. The neutralizing capacity of the sera was significantly greater against DENV-1 (P 
    Matched MeSH terms: Epitopes/immunology
  6. Teoh PG, Ooi AS, AbuBakar S, Othman RY
    J Biomed Biotechnol, 2009;2009:781712.
    PMID: 19325913 DOI: 10.1155/2009/781712
    A Cucumber green mottle mosaic virus (CGMMV) was used to present a truncated dengue virus type 2 envelope (E) protein binding region from amino acids 379 to 423 (EB4). The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP) open reading frame (ORF). Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo) leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi) revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.
    Matched MeSH terms: Epitopes/immunology
  7. Cheng HM, Foong YT, AbuSamah AJ, Dillner J, Sam CK, Prasad U
    Cancer Immunol Immunother, 1995 Apr;40(4):251-6.
    PMID: 7750123
    The linear antigenic epitopes of the Epstein-Barr virus replication activator protein (ZEBRA), recognised by specific serum IgG in nasopharyngeal carcinoma (NPC), were determined. This was achieved by synthesizing the entire amino acid sequence of ZEBRA as a set of 29, 22-residue peptides with an overlap of 14 amino acids. The ZEBRA peptides were tested in enzyme-linked immunosorbent assay (ELISA) for IgG binding in sera from 37 selected NPC patients who had IgG antibodies to the native ZEBRA protein. The most immunogenic epitope was peptide 1 at the amino-terminal end with 36 of the sera reactive against it. Further analysis of peptide 1, using the multipin peptide-scanning technique, defined a 10-amino-acid sequence FTPDPYQVPF, which was strongly bound by IgG. Two other regions of ZEBRA were also identified as immunodominant IgG epitopes, namely peptide 11 (amino acids 82-103) and peptide 19/20 (amino acids 146-175) with 8-13 of the NPC sera reactive against the peptides. The number of peptides reactive with individual NPC serum varies from 1 to 6 or more and there is some correlation between a greater number of peptide (at least 4) bound and a higher (at least 1:40) titre of serum IgA to viral capsid antigen. The immunodominant ZEBRA peptide 1 could be utilised in IgG ELISA for the detection of NPC.
    Matched MeSH terms: Immunodominant Epitopes/analysis*
  8. Cheng HM, Foong YT, Mathew A, Sam CK, Dillner J, Prasad U
    J Virol Methods, 1993 Apr;42(1):45-51.
    PMID: 7686558
    An ELISA using the Epstein-Barr virus nuclear antigen 1 (EBNA 1) was found to detect selectively specific IgA in sera from patients with nasopharyngeal carcinoma (NPC). The antigen, p107, was a 20-amino acid synthetic peptide, representing a major epitope of EBNA 1.267/294 (90.8%) of NPC patients had IgA antibodies to p107 but in normal individuals, only 41/577 (7.1%) had IgA/p107. In sera from patients with other cancers, 11/77 (14.3%) had IgA/p107 reactivity. 124 IgA/VCA positive and 86 IgA/VCA negative NPC sera were also tested for IgA/p107 binding in ELISA. The majority of IgA/VCA positive sera (117) also contained IgA/p107 antibodies. Of interest was the detection of 74/86 IgA/p107 reactive sera in the IgA/VCA negative group. The results suggest that the IgA/p107 ELISA could become a useful, complementary screening assay to the IgA/VCA immunofluorescence test for detection of NPC.
    Matched MeSH terms: Epitopes/immunology
  9. Cheong FW, Fong MY, Lau YL
    Acta Trop, 2016 Feb;154:89-94.
    PMID: 26624919 DOI: 10.1016/j.actatropica.2015.11.005
    Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes.
    Matched MeSH terms: Epitopes
  10. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    Oral Dis, 2006 Jul;12(4):387-94.
    PMID: 16792724
    To determine whether oral tolerance with the oral bacterium Actinomyces viscosus was inducible in mice.
    Matched MeSH terms: Epitopes
  11. Aley SB, Sherwood JA, Howard RJ
    J. Exp. Med., 1984 Nov 01;160(5):1585-90.
    PMID: 6208311
    We have investigated the expression of a strain-specific malarial antigen on the surface of erythrocytes infected with knobless (K-) variants of knob-positive (K+) strains of Plasmodium falciparum. Aotus blood infected with K+ or K- parasites derived from two independent geographical isolates (Malayan camp and Santa Lucia) was surface iodinated by the lactoperoxidase method. Infected and uninfected erythrocytes were then separated by a new procedure involving equilibrium density sedimentation on a Percoll gradient containing sorbitol. Strain-specific antigens were readily identified on the surface of erythrocytes infected with either of the K+ strains by their characteristic size and detergent solubility. These proteins were not detected on the surface of erythrocytes infected with either of the K- variants nor on uninfected erythrocytes isolated from K+- or K- -infected blood. These results are consistent with a role for the strain-specific surface antigen in cytoadherence of P. falciparum-infected erythrocytes. Our findings represent the second biochemical difference (with the knob-associated histidine-rich protein) between K+ and K- P. falciparum.
    Matched MeSH terms: Epitopes
  12. Simons MJ, Wee GB, Day NE, Morris PJ, Shanmugaratnam K, De-Thé GB
    Int J Cancer, 1974 Jan 15;13(1):122-34.
    PMID: 4131857
    Matched MeSH terms: Epitopes
  13. Raha AR, Varma NR, Yusoff K, Ross E, Foo HL
    Appl Microbiol Biotechnol, 2005 Jul;68(1):75-81.
    PMID: 15635459
    The food-grade Lactococcus lactis is a potential vector to be used as a live vehicle for the delivery of heterologous proteins for vaccine and pharmaceutical purposes. We constructed a plasmid vector pSVac that harbors a 255-bp single-repeat sequence of the cell wall-binding protein region of the AcmA protein. The recombinant plasmid was transformed into Escherichia coli and expression of the gene fragment was driven by the T7 promoter of the plasmid. SDS-PAGE showed the presence of the putative AcmA' fragment and this was confirmed by Western blot analysis. The protein was isolated and purified using a His-tag affinity column. When mixed with a culture of L. lactis MG1363, ELISA and immunofluorescence assays showed that the cell wall-binding fragment was anchored onto the outer surface of the bacteria. This indicated that the AcmA' repeat unit retained the active site for binding onto the cell wall surface of the L. lactis cells. Stability assays showed that the fusion proteins (AcmA/A1, AcmA/A3) were stably docked onto the surface for at least 5 days. The AcmA' fragment was also shown to be able to strongly bind onto the cell surface of naturally occurring lactococcal strains and Lactobacillus and, with less strength, the cell surface of Bacillus sphericus. The new system designed for cell surface display of recombinant proteins on L. lactis was evaluated for the expression and display of A1 and A3 regions of the VP1 protein of enterovirus 71 (EV71). The A1 and A3 regions of the VP1 protein of EV71 were cloned upstream to the cell wall-binding domains of AcmA protein and successfully expressed as AcmA/A1 and AcmA/A3. Whole-cell ELISA showed the successful display of VP1 protein epitopes of EV71 on the surface of L. lactis. The success of the anchoring system developed in this study for docking the A1 and A3 epitopes of VP1 onto the surface of L. lactis cells opens up the possibilities of peptide and protein display for not only Lactococcus but also for other gram-positive bacteria. This novel way of displaying epitopes on the cell surface of L. lactis and other related organisms should be very useful in the delivery of vaccines and other useful proteins.
    Matched MeSH terms: Epitopes
  14. Aw-Yong KL, NikNadia NMN, Tan CW, Sam IC, Chan YF
    Rev Med Virol, 2019 09;29(5):e2073.
    PMID: 31369184 DOI: 10.1002/rmv.2073
    Enterovirus A71 (EV-A71) from the Picornaviridae family is an important emerging pathogen causing hand, foot, and mouth disease (HFMD) outbreaks worldwide. EV-A71 also caused fatal neurological complications in young children especially in Asia. On the basis of seroepidemiological studies from many Asian countries, EV-A71 infection is very common. Children of very young age are particularly vulnerable. Large-scale epidemics that occur every 3 to 4 years are associated with accumulation of an immunologically naive younger population. Capsid proteins especially VP1 with the presence of major B- and T-cell epitopes are the most antigenic proteins. The nonstructural proteins mainly contribute to T-cell epitopes that induce cross-reactive immune responses against other enteroviruses. Dominant epitopes and their neutralization magnitudes differ in mice, rabbits, and humans. Neutralizing antibody is sufficient for immune protection, but poorer cellular immunity may lead to severe neurological complications and deaths. Some chemokines/cytokines are consistently found in severely ill patients, for example, IL-6, IL-10, IL-17A, MCP-1, IL-8, MIG, IP-10, IFN-γ, and G-CSF. An increase in white cell counts is a risk factor for severe HFMD. Recent clinical trials on EV-A71 inactivated vaccine showed >90% efficacy and a robust neutralization response that was protective, indicating neutralizing antibody correlates for protection. No protection against other enteroviruses was observed. A comprehensive understanding of the immune responses to EV-A71 infection will benefit the development of diagnostic tools, potential therapeutics, and subunit vaccine candidates. Future development of a multivalent enterovirus vaccine will require knowledge of correlates of protection, understanding of cross-protection and memory T-cell responses among enteroviruses.
    Matched MeSH terms: Epitopes, T-Lymphocyte
  15. Ahmed MA, Chu KB, Quan FS
    PeerJ, 2018;6:e6141.
    PMID: 30581686 DOI: 10.7717/peerj.6141
    Introduction: The zoonotic malaria parasite Plasmodium knowlesi has currently become the most dominant form of infection in humans in Malaysia and is an emerging infectious disease in most Southeast Asian countries. The P41 is a merozoite surface protein belonging to the 6-cysteine family and is a well-characterized vaccine candidate in P. vivax and P. falciparum; however, no study has been done in the orthologous gene of P. knowlesi. This study investigates the level of polymorphism, haplotypes and natural selection of pk41 genes in clinical isolates from Malaysia.

    Method: Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software.

    Results: Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima's D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo.

    Conclusion: This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen's candidacy as a vaccine target for P. knowlesi.

    Matched MeSH terms: Epitopes
  16. Siak PY, Wong KY, Song AA, Rahim RA, In LLA
    Vaccines (Basel), 2021 Feb 26;9(3).
    PMID: 33652552 DOI: 10.3390/vaccines9030195
    KRAS G12A somatic point mutation in adenocarcinomas is categorized clinically as ineligibility criteria for anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapies. In this study, a modified G12A-K-ras epitope (139A) with sequence-specific modifications to improve immunogenicity was developed as a potential vaccine against G12A-mutant KRAS cancers. Additionally, coupling of the 139A epitope with a tetanus toxoid (TTD) universal T-cell epitope to improve antigenicity was also reported. To facilitate convenient oral administration, Lactococcus lactis, which possesses innate immunomodulatory properties, was chosen as a live gastrointestinal delivery vehicle. Recombinant L. lactis strains secreting a G12A mutated K-ras control and 139A with and without TTD fusion were generated for comparative immunogenicity assessment. BALB/c mice were immunized orally, and high survivability of L. lactis passage through the gastrointestinal tract was observed. Elevations in B-cell count with a concomitant titre of antigen-specific IgG and interferon-γ secreting T-cells were observed in the 139A treated mice group. Interestingly, an even higher antigen-specific IgA response and interferon-γ secreting T-cell counts were observed in 139A-TTD mice group upon re-stimulation with the G12A mutated K-ras antigen. Collectively, these results indicated that an antigen-specific immune response was successfully stimulated by 139A-TTD vaccine, and a TTD fusion was successful in further enhancing the immune responses.
    Matched MeSH terms: Epitopes, T-Lymphocyte
  17. Mustafa S, Abd-Aziz N, Saw WT, Liew SY, Yusoff K, Shafee N
    Vaccines (Basel), 2020 Dec 07;8(4).
    PMID: 33297428 DOI: 10.3390/vaccines8040742
    Enterovirus 71 (EV71) is the major causative agent in hand, foot, and mouth disease (HFMD), and it mainly infects children worldwide. Despite the risk, there is no effective vaccine available for this disease. Hence, a recombinant protein construct of truncated nucleocapsid protein viral protein 1 (NPt-VP1198-297), which is capable of inducing neutralizing antibody against EV71, was evaluated in a mouse model. Truncated nucleocapsid protein Newcastle disease virus that was used as immunological carrier fused to VP1 of EV71 as antigen. The recombinant plasmid carrying corresponding genes was constructed by recombinant DNA technology and the corresponding protein was produced in Escherichia coli expression system. The recombinant NPt-VP1198-297 protein had elicited neutralizing antibodies against EV71 with the titer of 1:16, and this result is higher than the titer that is elicited by VP1 protein alone (1:8). It was shown that NPt containing immunogenic epitope(s) of VP1 was capable of inducing a greater functional immune response when compared to full-length VP1 protein alone. It was capable to carry larger polypeptide compared to full-length NP protein. The current study also proved that NPt-VP1198-297 protein can be abundantly produced in recombinant protein form by E. coli expression system. The findings from this study support the importance of neutralizing antibodies in EV71 infection and highlight the potential of the recombinant NPt-VP1198-297 protein as EV71 vaccine.
    Matched MeSH terms: Epitopes
  18. Tang SS, Tan WS, Devi S, Wang LF, Pang T, Thong KL
    Clin Diagn Lab Immunol, 2003 Nov;10(6):1078-84.
    PMID: 14607870
    The capsular polysaccharide Vi antigen (ViCPS) is an essential virulence factor and also a protective antigen of Salmonella enterica serovar Typhi. A random 12-mer phage-displayed peptide library was used to identify mimotopes (epitope analogues) of this antigen by panning against a ViCPS-specific monoclonal antibody (MAb) ATVi. Approximately 75% of the phage clones selected in the fourth round carried the peptide sequence TSHHDSHGLHRV, and the rest of the clones harbored ENHSPVNIAHKL and other related sequences. These two sequences were also obtained in a similar panning process by using pooled sera from patients with a confirmed diagnosis of typhoid fever, suggesting they mimic immunodominant epitopes of ViCPS antigens. Binding of MAb ATVi to the mimotopes was specifically blocked by ViCPS, indicating that they interact with the same binding site (paratope) of the MAb. Data and reagents generated in this study have important implications for the development of peptide-base diagnostic tests and peptide vaccines and may also provide a better understanding of the pathogenesis of typhoid fever.
    Matched MeSH terms: Epitopes
  19. Suppian R, Nor NM
    Trop Life Sci Res, 2013 Aug;24(1):9-18.
    PMID: 24575238 MyJurnal
    Heterologous prime-boost immunisation strategies can evoke powerful antibody responses and may be of value in developing an improved malaria vaccine. Herein, we show that an immunisation protocol that primes Balb/c mice with a recombinant Bacille Calmette-Guérin (rBCG) vaccine consisting of a plasmid encoding a synthetic fragment of the ESAT-6 epitope of Mycobacterium tuberculosis, the fragment 2 region II of erythrocyte-binding antigen (F2RIIEBA) and the three repeat sequences of the circumsporozoite protein (NANP)3 of Plasmodium falciparum before subsequently boosting the mice with either two doses of the rBCG clone or with a DNA vaccine expressing the native form of F2RIIEBA generating higher serum anti-F2RIIEBA antibody levels than an immunisation protocol that calls for a homologous prime-boost with two doses of rBCG. These results demonstrate the potential of DNA vaccination in boosting the antibody response to a recombinant vaccine expressing multiple epitopes.
    Matched MeSH terms: Epitopes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links