Displaying publications 101 - 120 of 1909 in total

Abstract:
Sort:
  1. Razak IA, Usman A, Fun HK, Yamin BM, Keat GW
    Acta Crystallogr C, 2002 Feb;58(Pt 2):m122-3.
    PMID: 11828100
    In the title compound, [SbCl(2)(C(4)H(8)N(2)S)(2)]Cl, the coordination around the Sb atom can be described as distorted pseudo-octahedral. Both rings of the trimethylenethiourea ligands [alternatively 3,4,5,6-tetrahydropyrimidine-2(1H)-thione] adopt an envelope conformation. The molecules are connected into dimers in the ab plane by two intermolecular hydrogen bonds. The dimers are arranged into infinite one-dimensional chains along the a axis as a result of the Cl(-) ions forming intermolecular hydrogen bonds with three NH groups.
    Matched MeSH terms: Hydrogen
  2. Shanmuga Sundara Raj S, Fun HK, Lu ZL, Xiao W, Gong XY, Gen CM
    Acta Crystallogr C, 2000 Aug;56 (Pt 8):1013-4.
    PMID: 10944309
    The crystal structure of the title compound, C(15)H(14)N(2)O(2). H(2)O, is in the keto tautomeric form and the configuration at the azomethine C=N double bond is E. The molecule is non-planar, with a dihedral angle of 27.3 (1) degrees between the aromatic rings. The crystal structure is stabilized by extensive hydrogen bonding involving the water molecule and hydrazone moiety.
    Matched MeSH terms: Hydrogen Bonding
  3. Ng SW, Yang Farina AA, Othman AH, Baba I, Sivakumar K, Fun HK
    Acta Crystallogr C, 2000 Mar 15;56(Pt 3):E84-5.
    PMID: 15263206
    The title compound, [Sn(CH(3))(2)(C(5)H(10)NO(2)S(2))(2)], has crystallographic mirror symmetry (C-Sn-C on mirror plane) and the coordination polyhedron around the Sn atom is a tetrahedron [C-Sn-C 139.3 (2) degrees and S-Sn-S 82.3 (1) degrees ] distorted towards a skew-trapezoidal bipyramid owing to an intramolecular Sn.S contact [3.0427 (6) A]. The molecules are linked into a linear chain by intermolecular O-H.O hydrogen bonds [O.O 2.646 (3) A].
    Matched MeSH terms: Hydrogen
  4. Ahmed Saud Abdulhameed, Ali H. Jawad, Abdul Karim-Talaq Mohammad
    Science Letters, 2020;14(2):1-14.
    MyJurnal
    Response surface methodology-Box–Behnken design (RSM-BBD) was employed to optimize the methyl orange (MO) dye removal efficiency from aqueous solution by cross-linked chitosan-tripolyphosphate/nano-titania compsite (Chi-TPP/NTC). The influence of pertinent parameters, i.e. A: TiO2 loading (0- 50 %), B: dose (0.04-0.14 g), C: pH (4-10), and D: temperature (30-50 oC) on the MO removal efficiency were tested and optimized using RSM-BBD. The F-values of BBD model for MO removal efficiency was 93.4 (corresponding p-value < 0.0001). The results illustrated that the highest MO removal efficiency (87.27 %) was observed at the following conditions: TiO2 loading (50% TiO2), dose (0.09 g), pH = 4.0, and temperature of 40 oC.
    Matched MeSH terms: Hydrogen-Ion Concentration
  5. Nik-Rashida Nik-Abdul-Ghani, Mohammed Saedi Jami, Ku Mariam Zainab Ku Abdullah
    MyJurnal
    Lead contamination present in wastewater is one of the major problems due to its toxicity and persistence. This issue increased dramatically and led to the environmental and health concerns worldwide. Therefore, this study aims to remove lead from synthetic wastewater effluent by adsorption process. In this study, nanomaterial called graphene oxide (GO) is used as an adsorbent due to its mechanical strength and high surface area. The parameters were optimized using Fractional factorial design under response surface method. GO demonstrates high adsorption capacity, qmax = 500 mg/g at 100 mg/L of initial lead concentration and at optimum pH 9. Adsorption isotherm of lead was also investigated to evaluate the adsorption capacity. The equilibrium data of graphene oxide adsorption was better represented by the Langmuir isotherm and was achieved within 60 minutes. The results showed that GO has potential to be an important adsorbent for lead removal. In the future, GO might be imbedded as adsorbent in the membrane fabrication for wastewater treatment.
    Matched MeSH terms: Hydrogen-Ion Concentration
  6. Nur Shazwani Abdul Mubarak, S. Sabar, Ali H. Jawad
    Science Letters, 2020;14(1):68-83.
    MyJurnal
    Commercial titanium dioxide Degussa P25 (TiO2) was used for the adsorption of reactive red 120
    (RR120) dye in a batch system. The optimization functions such as solution pH (3-12), adsorbent dosage (0.02 g-1.2 g), and initial dye concentration (30-400 mg/L) were studied. The equilibrium adsorption data for RR120 dye was analyzed by two types of isotherm models which are Langmuir and Freundlich models. The adsorption at equilibrium showed a better fit for linear Langmuir isotherm with the adsorption capacity, qmax of 18.62 mg/g at 303 K. The adsorption kinetic was well-described by pseudosecond order model. TiO2 showed a decent outcome due to the ability to adsorb target pollutants with theadded advantage of providing large hydroxyl groups (OH) on the surface of TiO2 so that pollutants can be adsorbed by interacting on the surface of OH.
    Matched MeSH terms: Hydrogen-Ion Concentration
  7. Nurul Najwa Abd Malek, Ali H. Jawad, Emad Yousif
    Science Letters, 2020;14(1):83-95.
    MyJurnal
    Cross-linked chitosan-epichlorohydrin was prepared for the adsorption of Reactive Red 4 (RR4).
    Response surface methodology (RSM) with 3–level Box-Behnken design (BBD) was employed to
    optimize the RR4 dye removal efficiency from aqueous solution. The adsorption key parameters that were selected such as adsorbent dose (A: 0.5 – 1.5 g), pH (B: 4 – 10) and time (30 – 80 min). The F-value of BBD model for RR4 removal efficiency was 185.36 (corresponding p-value < 0.0001). The results illustrated that the highest RR4 removal efficiency (70.53%) was obtained at the following conditions: adsorbent dose (1.0 g), pH 4 and time of 80 min.
    Matched MeSH terms: Hydrogen-Ion Concentration
  8. Munksgaard NC, Kurita N, Sánchez-Murillo R, Ahmed N, Araguas L, Balachew DL, et al.
    Sci Rep, 2019 10 08;9(1):14419.
    PMID: 31595004 DOI: 10.1038/s41598-019-50973-9
    We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.
    Matched MeSH terms: Hydrogen
  9. Yang J, Mohmad AR, Wang Y, Fullon R, Song X, Zhao F, et al.
    Nat Mater, 2019 12;18(12):1309-1314.
    PMID: 31451781 DOI: 10.1038/s41563-019-0463-8
    Metallic transition metal dichalcogenides (TMDs)1-8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10-100 mA cm-2) than industrial Pt and Ir electrolysers (>1,000 mA cm-2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm-2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm-2, corresponding to a turnover frequency of ~0.2 s-1. We demonstrate an electrolyser based on a 2H Nb1+xS2 cathode that can generate current densities of 1,000 mA cm-2. Our theoretical results reveal that 2H Nb1+xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+xS2 could be a viable catalyst for practical electrolysers.
    Matched MeSH terms: Hydrogen
  10. Rehman GU, Tahir M, Goh PS, Ismail AF, Samavati A, Zulhairun AK, et al.
    Environ Pollut, 2019 Oct;253:1066-1078.
    PMID: 31434184 DOI: 10.1016/j.envpol.2019.07.013
    In this study, the synthesis of Fe3O4@GO@g-C3N4 ternary nanocomposite for enhanced photocatalytic degradation of phenol has been investigated. The surface modification of Fe3O4 was performed through layer-by-layer electrostatic deposition meanwhile the heterojunction structure of ternary nanocomposite was obtained through sonicated assisted hydrothermal method. The photocatalysts were characterized for their crystallinity, surface morphology, chemical functionalities, and band gap energy. The Fe3O4@GO@g-C3N4 ternary nanocomposite achieved phenol degradation of ∼97%, which was significantly higher than that of Fe3O4@GO (∼75%) and Fe3O4 (∼62%). The enhanced photoactivity was due to the efficient charge carrier separation and desired band structure. The photocatalytic performance was further enhanced with the addition of hydrogen peroxide, in which phenol degradation up to 100% was achieved in 2 h irradiation time. The findings revealed that operating parameters have significant influences on the photocatalytic activities. It was found that lower phenol concentration promoted higher activity. In this study, 0.3 g of Fe3O4@GO@g-C3N4 was found to be the optimized photocatalyst for phenol degradation. At the optimized condition, the reaction rate constant was reported as 6.96 × 10-3 min-1. The ternary photocatalyst showed excellent recyclability in three consecutive cycles, which confirmed the stability of this ternary nanocomposite for degradation applications.
    Matched MeSH terms: Hydrogen Peroxide
  11. Fu D, Kurniawan TA, Lin L, Li Y, Avtar R, Dzarfan Othman MH, et al.
    J Environ Manage, 2021 May 15;286:112246.
    PMID: 33667817 DOI: 10.1016/j.jenvman.2021.112246
    This study tested the technical feasibility of pyrite and/or persulfate oxidation system for arsenic (As) removal from aqueous solutions. The effects of persulfate on As removal by the pyrite in the integrated treatment were also investigated. Prior to the persulfate addition into the reaction system, the physico-chemical interactions between As and the pyrite alone in aqueous solutions were explored in batch studies. The adsorption mechanisms of As by the adsorbent were also presented. At the same As concentration of 5 mg/L, it was found that As(III) attained a longer equilibrium time (8 h) than As(V) (2 h), while the pyrite worked effectively at pH ranging from 6 to 11. At optimum conditions (0.25 g/L of pyrite, pH 8.0 and 5 mg/L of As(III) concentration), the addition of persulfate (0.5 mM) into the reaction promoted a complete removal of arsenic from the solutions. Consequently, this enabled the treated effluents to meet the arsenic maximum contaminant limit (MCL) of <10 μg/L according to the World Health Organization (WHO)'s requirements. The redox mechanisms, which involved electron transfer from the S22- of the pyrite to Fe3+, supply Fe2+ for persulfate decomposition, oxidizing As(III) to As(V). The sulfur species played roles in the redox cycle of the Fe3+/Fe2+ of the pyrite by giving its electrons, while the As(III) oxidation to As(V) was attributed to the pyrite. Overall, this work reveals the applicability of the pyrite as an adsorbent for water treatment and the importance of persulfate addition to promote a complete As removal from aqueous solutions.
    Matched MeSH terms: Hydrogen-Ion Concentration
  12. Titah HS, Purwanti IF, Tangahu BV, Kurniawan SB, Imron MF, Abdullah SRS, et al.
    J Environ Manage, 2019 May 15;238:194-200.
    PMID: 30851558 DOI: 10.1016/j.jenvman.2019.03.011
    The emergence of the aluminium recycling industry has led to an increase in aluminium-containing wastewater discharge to the environment. Biological treatment of metal is one of the solutions that can be provided as green technology. Screening tests showed that Brochothrix thermosphacta and Vibrio alginolyticus have the potential to remove aluminium from wastewater. Brochothrix thermosphacta removed up to 49.60%, while Vibrio alginolyticus was capable of removing up to 59.72% of 100 mg/L aluminium in acidic conditions. The removal of aluminium by V. alginolyticus was well fitted with pseudo-first-order kinetics (k1 = 0.01796/min), while B. thermosphacta showed pseudo-second-order kinetics (k2 = 0.125612 mg substrate/g adsorbent. hr) in the process of aluminium removal. V. alginolyticus had a higher rate constant under acidic conditions, while B. thermosphacta had a higher rate constant under neutral pH conditions.
    Matched MeSH terms: Hydrogen-Ion Concentration
  13. Kulkarni AD, Rahman ML, Mohd Yusoff M, Kwong HC, Quah CK
    Acta Crystallogr E Crystallogr Commun, 2015 Nov 1;71(Pt 11):1411-3.
    PMID: 26594522 DOI: 10.1107/S2056989015020101
    The title compound, C23H22FN5S, exists in a trans conformation with respect to the methene C=C and the acyclic N=C bonds. The 1,2,4-triazole-5(4H)-thione ring makes dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, with the indole and benzene rings. In the crystal, mol-ecules are linked by pairs of N-H⋯S hydrogen bonds, forming inversion dimers with an R 2 (2)(8) ring motif. The dimers are linked via C-H⋯π inter-actions, forming chains along [1-10]. The chains are linked via π-π inter-actions involving inversion-related triazole rings [centroid-centroid distance = 3.4340 (13) Å], forming layers parallel to the ab plane.
    Matched MeSH terms: Hydrogen Bonding
  14. Yeo CI, Tan YS, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Oct 1;71(Pt 10):1159-64.
    PMID: 26594396 DOI: 10.1107/S2056989015016655
    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).
    Matched MeSH terms: Hydrogen Bonding
  15. Ravoof TB, Tiekink ER, Omar SA, Begum SZ, Tahir MI
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1071-2.
    PMID: 26870503 DOI: 10.1107/S205698901502407X
    In the title di-thio-carbazate compound, C17H19N3S2, the central CN2S2 residue is essentially planar (r.m.s. deviation = 0.0288 Å) and forms dihedral angles of 9.77 (8) and 77.47 (7)° with the substituted-pyridyl and p-tolyl rings, respectively, indicating a highly twisted mol-ecule; the dihedral angle between the rings is 85.56 (8)°. The configuration about the C=N bond is Z, which allows for the formation of an intra-molecular N-H⋯N(pyrid-yl) hydrogen bond. The packing features tolyl-methyl-C-H⋯N(imine), pyridyl-C-H⋯π(tol-yl) and π-π inter-actions [between pyridyl rings with a distance = 3.7946 (13) Å], which generates jagged supra-molecular layers that stack along the b axis with no directional inter-actions between them.
    Matched MeSH terms: Hydrogen Bonding
  16. Adam F, Samshuddin S, Ameram N, Subramaya, Samartha L
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1031-2.
    PMID: 26870482 DOI: 10.1107/S2056989015023294
    The title compound, C19H21N3O, comprises a central pyrazole ring which is N-connected to an aldehyde group and C-connected twice to substituted benzene rings. The pyrazole ring is twisted on the C-C single bond, and the least-squares plane through this ring forms dihedral angles of 82.44 (5) and 4.52 (5)° with the (di-methyl-amino)-benzene and p-tolyl rings, respectively. In the crystal, weak C-H⋯O hydrogen bonds link mol-ecules into supra-molecular tubes along the b axis.
    Matched MeSH terms: Hydrogen Bonding
  17. Eryanti Y, Zamri A, Herlina T, Supratman U, Rosli MM, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 01;71(Pt 12):1488-92.
    PMID: 26870411 DOI: 10.1107/S2056989015020976
    The title compounds, C20H19NO3, (1), and C20H17Cl2NO, (2), are the 3-hy-droxy-benzyl-idene and 2-chloro-benzyl-idene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis-(4-hy-droxy-3-meth-oxy-phen-yl)-1,6-hepta-diene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H⋯N and O-H⋯O hydrogen bonds link the mol-ecules, forming chains along [10-1]. The chains are linked via C-H⋯O hydrogen bonds, forming undulating sheets parallel to the ac plane. In the crystal of (2), mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the a-axis direction by π-π inter-actions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).
    Matched MeSH terms: Hydrogen Bonding
  18. Jotani MM, Gajera NN, Patel MC, Sung HH, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Oct 1;71(Pt 10):1121-4.
    PMID: 26594387 DOI: 10.1107/S2056989015016023
    The title compound, C17H15N3O2, is a monoclinic polymorph (P21/c with Z' = 1) of the previously reported triclinic (P-1 with Z' = 2) form [Gajera et al. (2013 ▸). Acta Cryst. E69, o736-o737]. The mol-ecule in the monoclinic polymorph features a central pyrazolyl ring with an N-bound p-tolyl group and a C-bound 1,3-benzodioxolyl fused-ring system on either side of the C atom bearing the amino group. The dihedral angles between the central ring and the N- and C-bound rings are 50.06 (5) and 27.27 (5)°, respectively. The angle between the pendent rings is 77.31 (4)°, indicating the mol-ecule has a twisted conformation. The five-membered dioxolyl ring has an envelope conformation with the methyl-ene C atom being the flap. The relative disposition of the amino and dioxolyl substituents is syn. One of the independent mol-ecules in the triclinic form has a similar syn disposition but the other has an anti arrangement of these substituents. In the crystal structure of the monoclinic form, mol-ecules assemble into supra-molecular helical chains via amino-pyrazolyl N-H⋯N hydrogen bonds. These are linked into layers via C-H⋯π inter-actions, and layers stack along the a axis with no specific inter-actions between them.
    Matched MeSH terms: Hydrogen Bonding
  19. Yusof ENM, Tahir MIM, Ravoof TBSA, Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):543-549.
    PMID: 28435717 DOI: 10.1107/S2056989017003991
    The title di-thio-carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl-benzyl 2-[(E)-3-phenyl-allyl-idene]hydrazinecarbodi-thio-ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl-ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol-ecule approximates mirror symmetry with the 4-tolyl group bis-ected by the plane. The configuration about both double bonds in the N-N=C-C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio-amide synthons, {⋯HNCS}2, are formed via N-H⋯S(thione) hydrogen bonds. Connections between the dimers via C-H⋯π inter-actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter-action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N-H⋯S hydrogen bonds is about 0.94 kcal mol(-1) more stable than that in (I).
    Matched MeSH terms: Hydrogen Bonding
  20. Kwong HC, Sim A, Chidan Kumar CS, Then LY, Win YF, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Dec 01;73(Pt 12):1812-1816.
    PMID: 29250392 DOI: 10.1107/S205698901701564X
    The asymmetric unit of the title compound, C24H14F4O2, comprises of one and a half mol-ecules; the half-mol-ecule is completed by crystallographic inversion symmetry. In the crystal, mol-ecules are linked into a three-dimensional network by C-H⋯F and C-H⋯O hydrogen bonds. Some of the C-H⋯F links are unusually short (< 2.20 Å). Hirshfeld surface analyses (dnorm surfaces and two-dimensional fingerprint plots) for the title compound are presented and discussed.
    Matched MeSH terms: Hydrogen Bonding
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links