Displaying publications 101 - 120 of 402 in total

Abstract:
Sort:
  1. Binns C, Low WY
    Asia Pac J Public Health, 2014 Sep;26(5):444-6.
    PMID: 25143450 DOI: 10.1177/1010539514546797
    Matched MeSH terms: Pacific Islands
  2. Wetzel FT, Kissling WD, Beissmann H, Penn DJ
    Glob Chang Biol, 2012 Sep;18(9):2707-19.
    PMID: 24501050 DOI: 10.1111/j.1365-2486.2012.02736.x
    Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habitat availability and distributions of selected mammal species. We estimate that between 3-32% of the coastal zone of these islands could be lost from primary effects, and consequently 8-52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10-18% of the sample mammals in a moderate range loss scenario and for 22-46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo-Malaysia, with potentially 7-48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning.
    Matched MeSH terms: Islands
  3. Likhitrakarn N, Golovatch SI, Panha S
    Zookeys, 2011.
    PMID: 22140329 DOI: 10.3897/zookeys.131.1921
    The large genus Orthomorpha is rediagnosed and is shown to currently comprise 51 identifiable species ranging from northern Myanmar and Thailand in the Northwest to Lombok Island, Indonesia in the Southeast. Of them, 20 species have been revised and/or abundantly illustrated, based on a restudy of mostly type material; further 12 species are described as new: Orthomorpha atypicasp. n., Orthomorpha communissp. n., Orthomorpha isarankuraisp. n., Orthomorpha picturatasp. n., Orthomorpha similanensissp. n., Orthomorpha suberectasp. n., Orthomorpha tuberculiferasp. n.,Orthomorpha subtuberculiferasp. n. and Orthomorpha latitergasp. n., all from Thailand, as well as Orthomorpha elevatasp. n.,Orthomorpha spiniformissp. n. and Orthomorpha subelevatasp. n., from northern Malaysia. The type-species Orthomorpha beaumontii (Le Guillou, 1841) is redescribed in due detail from male material as well, actually being a senior subjective synonym of Orthomorpha spinala (Attems, 1932), syn. n. Two additional new synonymies are proposed: Orthomorpha rotundicollis (Attems, 1937) = Orthomorpha tuberculata (Attems, 1937), syn. n., and Orthomorpha butteli Carl, 1922 = Orthomorpha consocius Chamberlin, 1945, syn. n., the valid names to the left. All species have been keyed and all new and some especially widespread species have been mapped. Further six species, including two revised from type material, are still to be considered dubious, mostly because their paraterga appear to be too narrow to represent Orthomorpha species. A new genus, Orthomorphoidesgen. n., diagnosed versus Orthomorpha through only moderately well developed paraterga, coupled with a poorly bi- or trifid gonopod tip, with at least some of its apical prongs being short spines, is erected for two species: Orthomorpha setosus (Attems, 1937), the type-species, which is also revised from type material, and Orthomorpha exaratus (Attems, 1953), both comb. n. ex Orthomorpha.
    Matched MeSH terms: Islands
  4. Win NN, Hanyuda T, Arai S, Uchimura M, Prathep A, Draisma SG, et al.
    J Phycol, 2011 Oct;47(5):1193-209.
    PMID: 27028247 DOI: 10.1111/j.1529-8817.2011.01054.x
    A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid-like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid-like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.
    Matched MeSH terms: Islands
  5. Huger AM
    J Invertebr Pathol, 2005 May;89(1):78-84.
    PMID: 16039308
    In view of the increasing and devastating damage by rhinoceros beetle (Oryctes rhinoceros) to coconut palms in the middle of last century, many efforts were made to find an efficient natural control factor against this pest, which could not be controlled by pesticides. The basic procedures of these monitoring programmes are outlined together with the final detection of a virus disease in oil palm estates in Malaysia in 1963. In extensive laboratory studies, the virus was isolated and identified as the first non-occluded, rod-shaped insect virus, morphologically resembling the baculoviruses. Infection experiments clarified the pathology, histopathology, and virulence of the virus and demonstrated that the virus was extremely virulent to larvae after peroral application. These findings encouraged the first pilot release of virus in 1967 in coconut plantations of Western Samoa where breeding sites were contaminated with virus. Surprisingly, the virus became established in the Samoan rhinoceros beetle populations and spread autonomously throughout the Western Samoan islands. As a consequence, there was a drastic decline of the beetle populations followed by a conspicuous recovery of the badly damaged coconut stands. This unexpected phenomenon could only be explained after it was shown that the adult beetle itself is a very active virus vector and thus was responsible for the efficient autodissemination of the virus. The functioning of the beetle as a 'flying virus factory' is due to the unique cytopathic process developing in the midgut after peroral virus infection. Pathological details of this process are presented. Because of the long-term persistence of the virus in the populations, rhinoceros beetle control is maintained. Incorporation of virus into integrated control measures and successful virus releases in many other countries are recorded.
    Matched MeSH terms: Pacific Islands
  6. Minas H, Izutsu T, Tsutsumi A, Kakuma R, Lopez AD
    Lancet Psychiatry, 2015 Mar;2(3):199-201.
    PMID: 26359888 DOI: 10.1016/S2215-0366(14)00124-2
    Matched MeSH terms: Pacific Islands
  7. Mohamed Hashim EK, Abdullah R
    J Theor Biol, 2015 Dec 21;387:88-100.
    PMID: 26427337 DOI: 10.1016/j.jtbi.2015.09.014
    Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. The multi-modality is caused by the formation of the two lowest modes where k-mers under them are referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively distributed in certain genomic features of CpG Island (CGI), promoter, 5' UTR, and exon. We correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, performed further intrinsic rare k-mer analyses within the correlated features, and modeled the elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter features. Our correlation results show that rare k-mers are highly associated with several annotated features of CGI, promoter, 5' UTR, and open chromatin regions. Our intrinsic results show that rare k-mers have several unique topological, compositional, and clustering properties in CGI and promoter features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, among eight of the benchmarked datasets.
    Matched MeSH terms: CpG Islands
  8. Waheed Z, Benzoni F, van der Meij SE, Terraneo TI, Hoeksema BW
    Zookeys, 2015.
    PMID: 26312025 DOI: 10.3897/zookeys.517.9308
    Layang-Layang is a small island part of an oceanic atoll in the Spratly Islands off Sabah, Malaysia. As the reef coral fauna in this part of the South China Sea is poorly known, a survey was carried out in 2013 to study the species composition of the scleractinian coral families Fungiidae, Agariciidae and Euphylliidae. A total of 56 species was recorded. The addition of three previously reported coral species brings the total to 59, consisting of 32 Fungiidae, 22 Agariciidae, and five Euphylliidae. Of these, 32 species are new records for Layang-Layang, which include five rarely reported species, i.e., the fungiids Lithophyllonranjithi, Podabaciasinai, Sandalolithaboucheti, and the agariciids Leptoseriskalayaanensis and Leptoseristroglodyta. The coral fauna of Layang-Layang is poor compared to other areas in Sabah, which may be related to its recovery from a crown-of-thorns seastar outbreak in 2010, and its low habitat diversity, which is dominated by reef slopes consisting of steep outer walls. Based on integrative molecular and morphological analyses, a Pavona variety with small and extremely thin coralla was revealed as Pavonamaldivensis. Since specimens from Sabah previously identified as Pavonamaldivensis were found to belong to Pavonaexplanulata, the affinities and distinctions of Pavonamaldivensis and Pavonaexplanulata are discussed.
    Matched MeSH terms: Islands
  9. Basir Khan MR, Jidin R, Pasupuleti J
    Data Brief, 2016 Mar;6:489-91.
    PMID: 26900590 DOI: 10.1016/j.dib.2015.12.033
    The data consists of actual generation-side auditing including the distribution of loads, seasonal load profiles, and types of loads as well as an analysis of local development planning of a resort island in the South China Sea. The data has been used to propose an optimal combination of hybrid renewable energy systems that able to mitigate the diesel fuel dependency on the island. The resort island selected is Tioman, as it represents the typical energy requirements of many resort islands in the South China Sea. The data presented are related to the research article "Optimal Combination of Solar, Wind, Micro-Hydro and Diesel Systems based on Actual Seasonal Load Profiles for a Resort Island in the South China Sea" [1].
    Matched MeSH terms: Islands
  10. Houghton JD, Hays GC
    Naturwissenschaften, 2001 Mar;88(3):133-6.
    PMID: 11402844
    For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised within a short period of time and then, when thermal conditions within the nest are uniform, develop at very similar rates and hence hatch and emerge together (Porter 1972). As a corollary of this idea, it would be predicted that when there are pronounced within-nest thermal gradients, development rates of siblings will be different and hence asynchronous hatching and emergence might occur. While it may be energetically beneficial for hatchlings to emerge in a group (Carr and Hirth 1961), if the extent of hatching asynchrony is marked then there may be severe costs for individuals if they wait for all their siblings to hatch before attempting to dig out of the sand (Hays and Speakman 1992). Under such conditions, the protracted emergence of small groups of hatchlings over several nights may be favoured. Examination of the literature suggests that emergence asynchrony may be more widespread than generally considered. For example, Witherington et al. (1990) described loggerhead turtle hatchlings (Caretta caretta) emerging over 4 days in Florida; for green turtles (Chelonia mydas), Hendrickson (1958) documented that nests in Malaysia and Sarawak produced hatchlings for up to 8 days; whilst Diamond (1976) found that hawksbill (Eretmochelys imbricata) nests on Cousin Island, Seychelles, were active for up to 4 days. Similarly, on the Greek Island of Kefalonia, we have shown that emergence from individual loggerhead turtle nests may occur on up to 11 nights (Hays and Speakman 1992). It is logical to suppose that asynchronous emergence relates to thermal gradients within nests, since the incubation duration of sea turtle eggs is related to temperature, with eggs hatching quicker when the temperature is higher. Here we test this hypothesis by measuring thermal variations within loggerhead turtle nests and comparing these variations to the patterns of hatchling emergence.
    Matched MeSH terms: Mediterranean Islands
  11. Jessop TS, Ariefiandy A, Purwandana D, Ciofi C, Imansyah J, Benu YJ, et al.
    Proc Biol Sci, 2018 11 14;285(1891).
    PMID: 30429305 DOI: 10.1098/rspb.2018.1829
    Loss of dispersal typifies island biotas, but the selective processes driving this phenomenon remain contentious. This is because selection via, both indirect (e.g. relaxed selection or island syndromes) and direct (e.g. natural selection or spatial sorting) processes may be involved, and no study has yet convincingly distinguished between these alternatives. Here, we combined observational and experimental analyses of an island lizard, the Komodo dragon (Varanus komodoensis, the world's largest lizard), to provide evidence for the actions of multiple processes that could contribute to island dispersal loss. In the Komodo dragon, concordant results from telemetry, simulations, experimental translocations, mark-recapture, and gene flow studies indicated that despite impressive physical and sensory capabilities for long-distance movement, Komodo dragons exhibited near complete dispersal restriction: individuals rarely moved beyond the valleys they were born/captured in. Importantly, lizard site-fidelity was insensitive to common agents of dispersal evolution (i.e. indices of risk for inbreeding, kin and intraspecific competition, and low habitat quality) that consequently reduced survival of resident individuals. We suggest that direct selection restricts movement capacity (e.g. via benefits of spatial philopatry and increased costs of dispersal) alongside use of dispersal-compensating traits (e.g. intraspecific niche partitioning) to constrain dispersal in island species.
    Matched MeSH terms: Islands
  12. Fujii Y, Tohno S, Ikeda K, Mahmud M, Takenaka N
    Sci Total Environ, 2021 Jan 20;753:142009.
    PMID: 32890879 DOI: 10.1016/j.scitotenv.2020.142009
    In this paper, ambient total suspended particulates (TSP) with a focus on humic-like substances (HULIS) are characterized based on intensive ground-based field samplings collected in Malaysia during non-haze and haze periods caused by peatland fires on the Indonesian island of Sumatra. Furthermore, concentrations of water-soluble organic carbon (WSOC) and carbon content of HULIS (HULIS-C) were determined, and fluorescence spectra of the HULIS samples were recorded by excitation emission matrix (EEM) fluorescence spectroscopy. The concentrations of WSOC and HULIS-C over the entire period ranged from 4.1 to 24 and 1.3 to 18 μgC m-3, respectively. The concentrations of WSOC and HULIS-C during the peatland fire-induced strong haze periods were over 4.3 and 6.1 times higher, respectively, than the average values recorded during the non-haze periods. Even during the light haze periods, the concentrations of WSOC and HULIS-C were significantly higher than their averages during the non-haze periods. These results indicate that peatland fires induce high concentrations of WSOC, particularly HULIS-C, in ambient TSP at receptor sites. EEM fluorescence spectra identified fulvic-like fluorophores at the highest intensity level in the EEM fluorescence spectra of the haze samples. A peak at excitation/emission (Ex/Em) ≈ (290-330)/(375-425) nm is also observed at high intensity, though this peak is normally associated with marine humic-like fluorophores. It is shown that a peak at Ex/Em ≈ (290-330)/(375-425) nm is not derived from marine sources only; furthermore, peatland fires are shown to be important contributors to HULIS around this peak.
    Matched MeSH terms: Islands
  13. Bechteler J, Schäfer-Verwimp A, Lee GE, Feldberg K, Pérez-Escobar OA, Pócs T, et al.
    Ecol Evol, 2017 01;7(2):638-653.
    PMID: 28116059 DOI: 10.1002/ece3.2656
    The evolutionary history and classification of epiphyllous cryptogams are still poorly known. Leptolejeunea is a largely epiphyllous pantropical liverwort genus with about 25 species characterized by deeply bilobed underleaves, elliptic to narrowly obovate leaf lobes, the presence of ocelli, and vegetative reproduction by cladia. Sequences of three chloroplast regions (rbcL, trnL-F, psbA) and the nuclear ribosomal ITS region were obtained for 66 accessions of Leptolejeunea and six outgroup species to explore the phylogeny, divergence times, and ancestral areas of this genus. The phylogeny was estimated using maximum-likelihood and Bayesian inference approaches, and divergence times were estimated with a Bayesian relaxed clock method. Leptolejeunea likely originated in Asia or the Neotropics within a time interval from the Early Eocene to the Late Cretaceous (67.9 Ma, 95% highest posterior density [HPD]: 47.9-93.7). Diversification of the crown group initiated in the Eocene or early Oligocene (38.4 Ma, 95% HPD: 27.2-52.6). Most species clades were established in the Miocene. Leptolejeunea epiphylla and L. schiffneri originated in Asia and colonized African islands during the Plio-Pleistocene. Accessions of supposedly pantropical species are placed in different main clades. Several monophyletic morphospecies exhibit considerable sequence variation related to a geographical pattern. The clear geographic structure of the Leptolejeunea crown group points to evolutionary processes including rare long-distance dispersal and subsequent speciation. Leptolejeunea may have benefitted from the large-scale distribution of humid tropical angiosperm forests in the Eocene.
    Matched MeSH terms: Islands
  14. Shahimi S, Salam R, Salim JM, Ahmad A
    Data Brief, 2019 Aug;25:104045.
    PMID: 31194175 DOI: 10.1016/j.dib.2019.104045
    This data article is on riparian vegetation species richness in four different streams located in the Sultan Mahmud Hydroelectric dam, also known as Kenyir dam and commonly referred to as Tasik Kenyir, Terengganu. The dataset consists of three reservoir-island streams and the other is a small stream located on the mainland. A total of 41 families and 90 species of riparian plants were reported for the first time after 34 years of the establishment of the Sultan Mahmud Hydroelectric dam. Trees contributing 60% of the species recorded in this study and the others were non-tree species, including climbers, ferns, epiphyte, herbs, shrub, strangling trees and palms. Among the recorded riparian plant species, two are introduced which are Clidemia hirta and Mimosa pigra. The highest diversity of riparian plant found in the stream of Sungai Kiang, followed by Sungai Ikan and Sungai Saok with 46, 29 and 17 species respectively for the reservoir-island streams. The mainland stream, Sungai Siput recorded 37 species. These riparian plants provide important ecosystem services, among others soil stabilization, habitat and food for aquatic fauna and water filtration. In terms of plant utilization potential and values, 47 species are identified having medicinal value, 10 species with ornamental value and another 36 species are timber trees. Our study demonstrates that the riparian plants are closely linked to stream size with variability associated with types of stream systems. The data collected also demonstrates that the riparian plant community is at the seral stages of riparian forest. This is indicated by the increase in plant species richness as the vegetation gradually changes from riparian towards mature forest composition. To secure ecological functions of Tasik Kenyir riparian plant assemblages, particularly in stabilizing the lake's margin and riverbank, it is recommended that monitoring and legal protection may need to be imposed by local authority.
    Matched MeSH terms: Islands
  15. Matra DD, Ritonga AW, Natawijaya A, Poerwanto R, Sobir, Widodo WD, et al.
    Data Brief, 2019 Feb;22:332-335.
    PMID: 30596128 DOI: 10.1016/j.dib.2018.12.031
    Baccaurea motleyana Müll. Arg. (rambai) is one of the underutilized fruit natives to Indonesia, Thailand, and Malaya Peninsula and it is mostly cultivated in Java island (Lim, 2012) [1]. The edible part of fruits is white and reddish arillodes in which having sweet to acid-sweet tastes. However, nucleotide as well as transcriptome information of this species is still scarce, no information has been deposited in GenBank. In this data article, we performed for the first time of de novo assembly of transcriptome using paired-end Illumina technology. The assembled contigs were constructed using Trinity and after filtering and clustering, produced 37,077 contigs. The contig ranged 201-4972 bp and N50 has 696 bp. The contig was annotated with several database such as SwissProt, TrEMBL, nr and nt NCBI databases. The raw reads were deposited in DDBJ with DRA numbers, DRA007358. The assembled contigs of transcriptome are deposited in the DDBJ TSA with accession number, IADP01000001-IADP01037077 and also can be accessed at http://rujakbase.id.
    Matched MeSH terms: Islands
  16. Curnick DJ, Pettorelli N, Amir AA, Balke T, Barbier EB, Crooks S, et al.
    Science, 2019 01 18;363(6424):239.
    PMID: 30655434 DOI: 10.1126/science.aaw0809
    Matched MeSH terms: Indian Ocean Islands
  17. Maimusa HA, Ahmad AH, Kassim NF, Rahim J
    J Am Mosq Control Assoc, 2016 Mar;32(1):1-11.
    PMID: 27105211 DOI: 10.2987/moco-32-01-1-11.1
    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia.
    Matched MeSH terms: Islands
  18. Qiu S, Chen B, Du J, Loh KH, Liao J, Liu X, et al.
    Biodivers Data J, 2021;9:e63945.
    PMID: 33732033 DOI: 10.3897/BDJ.9.e63945
    Background: The Xisha Islands are composed of the Yongle Islands and the Xuande Islands in Hainan Province, China. It has one of the highest species diversity in the world and is also a typical oceanic distribution area of coral reefs globally. The ichthyofauna of the Xisha Islands were recorded by underwater visual census in May 2019 and July 2020. The survey data were combined with previous records of species into the checklist of the Xisha Islands presented herein. A total of 691 species, belonging to 24 orders and 97 families, was recorded. The major families were Labridae, Pomacentridae, Serranidae, Chaetodontidae, Hexanchidae, Lutjanidae, Scaridae, Gobiidae, Scorpaenidae and Carangidae. In this study, the Coral Fish iversity Index (CFDI) of six families (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae and Acanthuridae) was 229, indicating 756 coral fishes. In terms of the IUCN Red List, one species is Critically Endangered (Glyphis gangeticus), six species are Endangered (Stegostoma fasciatum, Aetomylaeus maculatus, Aetomylaeus vespertilio, Epinephelus akaara, Cheilinusundulatus sp. and Xiphias gladius), 16 species are Vulnerable, and 13 species are Near Threatened in the Xisha Archipelago, so conservation should be strengthened in this area in the future.

    New information: One species is a new record for China (Dischistodus pseudochrysopoecilus) and 23 species are newly found in the Xisha Islands.

    Matched MeSH terms: Islands
  19. Chomérat N, Bilien G, Viallon J, Hervé F, Réveillon D, Henry K, et al.
    Harmful Algae, 2020 09;98:101888.
    PMID: 33129466 DOI: 10.1016/j.hal.2020.101888
    Among dinoflagellates responsible for benthic harmful algal blooms, the genus Ostreopsis primarily described from tropical areas has been increasingly reported from subtropical and temperate areas worldwide. Several species of this toxigenic genus produce analogs of palytoxin, thus representing a major threat to human and environmental health. The taxonomy of several species needs to be clarified as it was based mostly on morphological descriptions leading in some cases to ambiguous interpretations and misidentifications. The present study aims at reporting a benthic bloom that occurred in April 2019 in Tahiti island, French Polynesia. A complete taxonomic investigation of the blooming Ostreopsis species was realized using light, epifluorescence and field emission electron microscopy and phylogenetic analyses inferred from LSU rDNA and ITS-5.8S rDNA regions. Toxicity of a natural sample and strains isolated from the bloom was assessed using both neuroblastoma cell-based assay and LC-MS/MS analyses. Morphological observations showed that cells were round to oval, large, 58.0-82.5 µm deep (dorso-ventral length) and 45.7-61.2 µm wide. The cingulum was conspicuously undulated, forming a 'V' in ventral view. Thecal plates possessed large pores in depressions, with a collar rim. Detailed observation also revealed the presence of small thecal pores invisible in LM. Phylogenetic analyses were congruent and all sequences clustered within the genotype Ostreopsis sp. 6, in a subclade closely related to sequences from the Gulf of Thailand and Malaysia. No toxicity was found on the field sample but all the strains isolated from the bloom were found to be cytotoxic and produced ostreocin D, a lower amount of ostreocins A and B and putatively other compounds. Phylogenetic data demonstrate the presence of this species in the Gulf of Thailand, at the type locality of O. siamensis, and morphological data are congruent with the original description and support this identification.
    Matched MeSH terms: Islands
  20. Ranganathan S, Gribskov M, Tan TW
    BMC Bioinformatics, 2008;9 Suppl 1:S1.
    PMID: 18315840 DOI: 10.1186/1471-2105-9-S1-S1
    We provide a 2007 update on the bioinformatics research in the Asia-Pacific from the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998. From 2002, APBioNet has organized the first International Conference on Bioinformatics (InCoB) bringing together scientists working in the field of bioinformatics in the region. This year, the InCoB2007 Conference was organized as the 6th annual conference of the Asia-Pacific Bioinformatics Network, on Aug. 27-30, 2007 at Hong Kong, following a series of successful events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea) and New Delhi (India). Besides a scientific meeting at Hong Kong, satellite events organized are a pre-conference training workshop at Hanoi, Vietnam and a post-conference workshop at Nansha, China. This Introduction provides a brief overview of the peer-reviewed manuscripts accepted for publication in this Supplement. We have organized the papers into thematic areas, highlighting the growing contribution of research excellence from this region, to global bioinformatics endeavours.
    Matched MeSH terms: Pacific Islands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links