Displaying publications 101 - 120 of 374 in total

Abstract:
Sort:
  1. Yunus N, Rashid AA, Azmi LL, Abu-Hassan MI
    J Oral Rehabil, 2005 Jan;32(1):65-71.
    PMID: 15634304
    Nylon denture base material could be a useful alternative to poly (methyl methacrylate) (PMMA) in special circumstances such as patient allergy to the monomer. The aim of this study was to evaluate the flexural properties of a nylon denture base material (Lucitone FRS), a conventional compression-moulded heat-polymerized (Meliodent), a compression-moulded microwave-polymerized (Acron MC) and an injection-moulded microwave-polymerized (Lucitone 199) PMMA polymers. The effect of aldehyde-free, oxygen releasing disinfectant solution (Perform) on these properties was also investigated. The flexural modulus and the flexural strength were assessed with a three-point bending test. Specimens were stored in water at a temperature of 37 degrees C for 30 days. For each material, half of the prepared specimens were randomly selected and immersed in the disinfectant 24 h prior to testing. Results were compared statistically at a confidence level of 95%. The result showed that in both the control and disinfected groups, the flexural modulus of nylon was significantly lower than the three PMMA polymers. The flexural strength of nylon was significantly lower than those of Meliodent and Acron MC but was comparable with Lucitone 199. A 24-h immersion in the disinfecting solution increased the rigidity of nylon denture base material.
    Matched MeSH terms: Materials Testing/methods
  2. Loqman MY, Wong CM, Hair-Bejo M, Zuki AB, Hafeez YM
    Med J Malaysia, 2004 May;59 Suppl B:113-4.
    PMID: 15468844
    A study was conducted to investigate the effectiveness of freeze-dried bovine pericardium (FDBP) as a biomaterial in diaphragmatic herniorrhapy in dogs. Eight adult dogs were randomly selected and divided into two equal groups. In FDBP group, a diaphragmatic defect was induced and repaired with an identical size of FDBP. In the control group, a diaphragmatic wall was incised at three-side border creating a flap and sutured. Grossly, only mild intrathoracic adhesion was observed for most of the animals, and no herniation occured. Microscopically, the biomaterial incorporated into the host's tissue by ingrowth of young muscle fiber and massive new blood vessel formation in between the fibrous tissue.
    Matched MeSH terms: Materials Testing*
  3. Rosdan S, Al-Salihi KA, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:111-2.
    PMID: 15468843
    The main objective of the study was to determine the biodegradability, resorption and osteoconductivity potency of coral implant. Coral blocks (CORAGRAF) were prepared from sea coral Porites species. The blocks were implanted in the right mandible of rabbit model. Implants were harvested at 2 and 4 weeks intervals and subjected for light and scanning electron microscopy. Dense hydroxyapatite (DHA) was implanted in the left mandible as a control. The results of this study demonstrated that CORAGRAF is a good implant material that can accelerates bone healing and be resorbed in an acceptable time. The mechanisms of the resorption seemed to be the same (crumbling process), a first step where the edge of the coral become powdery then a second step which could be phagocytosis and dissolution in extracellular fluid.
    Matched MeSH terms: Materials Testing*
  4. Shaari R, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:109-10.
    PMID: 15468842
    The present in vitro evaluation indicated that the value added hydroxyapatite (HA) was more toxic than pure HA but the toxicity of value added HA was slight compared to the positive control. In this testing, the conclusion can be made that value added HA is less biocompatible than commercialized pure HA. This toxicity may be caused by both the particle size and degradation (leaching). Further studies should be carried out to determine whether there is particle size effect or leaching effect when using powder as compared to the block materials. The in vivo evaluation should be done to assess the reaction to this value added HA as compared to the pure HA.
    Matched MeSH terms: Materials Testing*
  5. Kannan RY, Sales KM, Salacinski HJ, Butler PE, Seifalian AM
    Med J Malaysia, 2004 May;59 Suppl B:107-8.
    PMID: 15468841
    Matched MeSH terms: Materials Testing*
  6. Lai KL, Roziyanna A, Ogunniyi DS, Zainal AM, Azlan AA
    Med J Malaysia, 2004 May;59 Suppl B:61-2.
    PMID: 15468819
    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.
    Matched MeSH terms: Materials Testing*
  7. Azran YM, Idris B, Rusnah M, Rohaida CH
    Med J Malaysia, 2004 May;59 Suppl B:79-80.
    PMID: 15468828
    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp In this study, the HAp was prepared using polymeric sponge techniques with different binder concentrations. The sintering process was carried out in air for temperature ranging from 1200 degrees C to 1600 degrees C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentrations showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut would also be presented in this paper.
    Matched MeSH terms: Materials Testing*
  8. Hee SL, Nik Intan NI, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:77-8.
    PMID: 15468827
    There is a great demand of Hydroxyapatite (HA) material in Orthopaedics and Dental applications due to its similarity to human bone. However, the lack of availability and due to high import cost of this material in Malaysia, research in producing synthetic HA locally is therefore timely. The use of local resources as the raw materials for the production of HA is also desirable in reducing the overall cost of HA. In this study, two HA materials were synthesised from different starting precursors, i.e. commercial pure Ca(OH)2 (HAS) and Ca(OH)2 directly from a local natural limestone deposit (HAL). Whereas a commercially available HA "Captal 60" (HAC) was used as reference. The synthesised powders obtained were fired at 1000 degrees C and at 1250 degrees C. Characterisation evaluations on bulk properties were carried out using XRD, SEM-EDX, ICP and FTIR. The results indicate that both HAS and HAL are comparable to HAC even at 1000 degrees C. Thus, the local natural limestone can be used to form HA. However, the overall appearance of these materials are quite different (HAC - blue, HAS - greenish and HAL - light green). The reasons for this and the subsequent mechanical and bioactive effects of these materials are currently being investigated.
    Matched MeSH terms: Materials Testing*
  9. Ambrosio L, Battista S, Borzacchiello A, Borselli C, Causa F, De Santis R, et al.
    Med J Malaysia, 2004 May;59 Suppl B:71-2.
    PMID: 15468824
    Matched MeSH terms: Materials Testing*
  10. Kannan RY, Sales KM, Salacinski HJ, Butler PE, Seifalian AM
    Med J Malaysia, 2004 May;59 Suppl B:99-100.
    PMID: 15468837
    Matched MeSH terms: Materials Testing*
  11. Vert M
    Med J Malaysia, 2004 May;59 Suppl B:73-4.
    PMID: 15468825
    Matched MeSH terms: Materials Testing*
  12. Ismarul IN, Ishak Y, Ismail Z, Mohd Shalihuddin WM
    Med J Malaysia, 2004 May;59 Suppl B:57-8.
    PMID: 15468817
    Various proportions of chitosan/collagen films (70/30% to 95/05%) w/w were prepared and evaluated for its suitability as skin regenerating scaffold. Interactions between chitosan and collagen were studied using Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Colorimetry (DSC). Scanning Electron Microscope (SEM) was used to investigate the morphology of the blend. Mechanical properties were evaluated using a Universal Testing Machine (UTM). The chitosan/collagen films were found to swell proportionally with time until it reaches equilibrium. FTIR spectroscopy indicated no chemical interaction between the components of the blends. DSC data indicated only one peak proving that these two materials are compatible at all proportions investigated. SEM micrographs also indicated good homogeneity between these two materials.
    Matched MeSH terms: Materials Testing*
  13. Shahinuzzaman M, Yaakob Z, Moniruzzaman M
    J Cosmet Dermatol, 2016 Jun;15(2):185-93.
    PMID: 26777540 DOI: 10.1111/jocd.12209
    Soap is the most useful things which we use our everyday life in various cleansing and cosmetics purposes. Jatropha oil is nonedible oil which has more benefits to soap making. It has also cosmetics and medicinal properties. But the presence of toxic Phorbol esters in Jatropha oil is the main constrains to use it. So it is necessary to search a more suitable method for detoxifying the Jatropha oil before the use as the main ingredient of soap production. This review implies a more suitable method for removing phorbol esters from Jatropha oil. Several parameters such as the % yield of pure Jatropha oil soap, TFM value of soap, total alkali content, free caustic alkalinity content, pH, the antimicrobial activity, and CMC value of general soap should be taken into consideration for soap from detoxified Jatropha oil.
    Matched MeSH terms: Materials Testing/methods
  14. Ataollahi Oshkour A, Pramanik S, Mehrali M, Yau YH, Tarlochan F, Abu Osman NA
    J Mech Behav Biomed Mater, 2015 Sep;49:321-31.
    PMID: 26072197 DOI: 10.1016/j.jmbbm.2015.05.020
    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.
    Matched MeSH terms: Materials Testing*
  15. Kakavand M, Yazdanpanah G, Ahmadiani A, Niknejad H
    J Tissue Eng Regen Med, 2017 06;11(6):1701-1709.
    PMID: 26190586 DOI: 10.1002/term.2064
    Amniotic membrane (AM), a placenta-derived natural biomaterial, has several characteristics which make it a potential substitute for blood vessels. However, there are no reports on the effects of the AM on blood components. The aim of this study was to evaluate the blood compatibility of the epithelial and mesenchymal surfaces of the amnion for potential use in vascular tissue engineering. The activation of intrinsic and extrinsic pathways of the clotting system, haemolysis and platelet adhesion were studied and the results were compared with heparin-coated expanded polytetrafluoroethylene (ePTFE) as a standard synthetic vascular graft. Prothrombin time (PT), activated partial thromboplastin time (aPTT), clotting time (CT) and haemolysis (%) tests showed that both the epithelial and mesenchymal sides of the AM are haemocompatible. Platelet aggregation and P-selectin production from the platelets showed that the epithelial surface of the AM has less induction of platelet activation than ePTFE. The results of scanning electron microscopy (SEM) demonstrated that platelets in contact with ePTFE had a higher rate of adhesion than with the epithelial and mesenchymal surfaces of the AM. Moreover, the morphological distribution of the platelets showed that the majority of platelets were round, while a large number of cells on ePTFE were dendritic. These results suggest that the AM which contains epithelial and mesenchymal stem cells has appropriate haemocompatibility to be employed in vascular tissue engineering, especially as a vein substitute. Copyright © 2015 John Wiley & Sons, Ltd.
    Matched MeSH terms: Materials Testing*
  16. Sahapaibounkit P, Prasertsung I, Mongkolnavin R, Wong CS, Damrongsakkul S
    J Biomed Mater Res B Appl Biomater, 2017 08;105(6):1658-1666.
    PMID: 27177842 DOI: 10.1002/jbm.b.33708
    In this study, polycaprolactone (PCL) film, a high potential material used in biomedical applications, was treated by air plasma prior to a conjugation by carbodiimide cross-linking with various types of proteins, including type A gelatin, type B gelatin, and collagen hydrolysate. The properties of modified PCL films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurement, and atomic force microscopy. The XPS results showed that oxygen and nitrogen atoms were successfully introduced on the air plasma-treated PCL surface. Primary amine was found on the air plasma-treated PCL films. All proteins were shown to be successfully cross-linked on air plasma-treated PCL films. The wettability and roughness of protein-conjugated PCL films were significantly increased compared to those of neat PCL film. In vitro biocompatibility test using L929 mouse fibroblast showed that the attachment percentage and spreading area of attached cells on all protein-conjugated PCL films were markedly increased. Comparing among modified PCL films, no significant difference on the attachment of L929 on modified PCL films was noticed. However, the spreading areas of cells after 24 hours of culture on type A gelatin- and type B gelatin-modified PCL surfaces were higher than that on collagen hydrolysate-modified surface, possibly related to the lower percentage of amide bond on collagen hydrolysate-conjugated surface compared to those on both gelatin-conjugated PCL ones. This indicated that the two-step modification of PCL film via air plasma and carbodiimide cross-linking with collagen-derived proteins could enhance the biocompatibility of PCL films. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1658-1666, 2017.
    Matched MeSH terms: Materials Testing*
  17. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:89-100.
    PMID: 27524000 DOI: 10.1016/j.msec.2016.04.110
    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications.
    Matched MeSH terms: Materials Testing*
  18. Zailani MZ, Ismail AF, Sheikh Abdul Kadir SH, Othman MH, Goh PS, Hasbullah H, et al.
    J Biomed Mater Res A, 2017 05;105(5):1510-1520.
    PMID: 28000366 DOI: 10.1002/jbm.a.35986
    In this study, poly (1,8-octanediol citrate) (POC) was used to modify polyethersulfone (PES)-based membrane to enhance its hemocompatibility. Different compositions of POC (0-3%) were added into the polyethersulfone (PES) dope solutions and polyvinylpyrrolidone (PVP) was used as pore forming agent. The hemocompatible POC modified PES membranes were fabricated through phase-inversion technique. The prepared membranes were characterized using attenuated total reflectance-Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Atomic-force microscopy (AFM), contact angle, Zeta-potential, membrane porosity and pore size and pure water flux (PWF) and BSA rejection. The hemocompatibility of the modified PES membranes was evaluated by human serum fibrinogen (FBG) protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT) and prothrombin time (PT), and thrombin-antithrombin III (TAT), complement (C3a and C5a) activation and Ca2+ absorption on membrane. Results showed that by increasing POC concentration, FBG adsorption was reduced, less platelets adhesion, prolonged APTT and PT, lower TAT, C5a and C3a activation and absorb more Ca2+ ion. These results indicated that modification of PES with POC has rendered improved hemocompatibility properties for potential application in the field of blood purification, especially in hemodialysis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1510-1520, 2017.
    Matched MeSH terms: Materials Testing*
  19. Md Rezali KA, Griffin MJ
    Ergonomics, 2018 Sep;61(9):1246-1258.
    PMID: 29628001 DOI: 10.1080/00140139.2018.1462407
    This study investigated effects of applied force on the apparent mass of the hand, the dynamic stiffness of glove materials and the transmission of vibration through gloves to the hand. For 10 subjects, 3 glove materials and 3 contact forces, apparent masses and glove transmissibilities were measured at the palm and at a finger at frequencies in the range 5-300 Hz. The dynamic stiffnesses of the materials were also measured. With increasing force, the dynamic stiffnesses of the materials increased, the apparent mass at the palm increased at frequencies greater than the resonance and the apparent mass at the finger increased at low frequencies. The effects of force on transmissibilities therefore differed between materials and depended on vibration frequency, but changes in apparent mass and dynamic stiffness had predictable effects on material transmissibility. Depending on the glove material, the transmission of vibration through a glove can be increased or decreased when increasing the applied force. Practitioner summary: Increasing the contact force (i.e. push force or grip force) can increase or decrease the transmission of vibration through a glove. The vibration transmissibilities of gloves should be assessed with a range of contact forces to understand their likely influence on the exposure of the hand and fingers to vibration.
    Matched MeSH terms: Materials Testing/methods
  20. Hasmad H, Yusof MR, Mohd Razi ZR, Hj Idrus RB, Chowdhury SR
    Tissue Eng Part C Methods, 2018 06;24(6):368-378.
    PMID: 29690856 DOI: 10.1089/ten.TEC.2017.0447
    Fabrication of composite scaffolds is one of the strategies proposed to enhance the functionality of tissue-engineered scaffolds for improved tissue regeneration. By combining multiple elements together, unique biomimetic scaffolds with desirable physical and mechanical properties can be tailored for tissue-specific applications. Despite having a highly porous structure, the utility of electrospun fibers (EF) as scaffold is usually hampered by their insufficient mechanical strength. In this study, we attempted to produce a mechanically competent scaffold with cell-guiding ability by fabricating aligned poly lactic-co-glycolic acid (PLGA) fibers on decellularized human amniotic membrane (HAM), known to possess favorable tensile and wound healing properties. Decellularization of HAM in 18.75 μg/mL of thermolysin followed by a brief treatment in 0.25 M sodium hydroxide efficiently removed the amniotic epithelium and preserved the ultrastructure of the underlying extracellular matrix. The electrospinning of 20% (w/v) PLGA 50:50 polymer on HAM yielded beadless fibers with straight morphology. Subsequent physical characterization revealed that EF-HAM scaffold with a 3-min fabrication had the most aligned fibers with the lowest fiber diameter in comparison with EF-HAM 5- and 7-min scaffolds. Hydrated EF-HAM scaffolds with 3-min deposition had a greater tensile strength than the other scaffolds despite having thinner fibers. Nevertheless, wet HAM and EF-HAMs regardless of the fiber thicknesses had a significantly lower Young's modulus, and hence, a higher elasticity compared with dry HAM and EF-HAMs. Biocompatibility analysis showed that the viability and migration rate of skeletal muscle cells on EF-HAMs were similar to control and HAM alone. Skeletal muscle cells seeded on HAM were shown to display random orientation, whereas cells on EF-HAM scaffolds were oriented along the alignment of the electrospun PLGA fibers. In summary, besides having good mechanical strength and elasticity, EF-HAM scaffold design decorated with aligned fiber topography holds a promising potential for use in the development of aligned tissue constructs.
    Matched MeSH terms: Materials Testing*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links