Displaying publications 101 - 120 of 244 in total

Abstract:
Sort:
  1. Noordin A, Sapri HF, Mohamad Sani NA, Leong SK, Tan XE, Tan TL, et al.
    J Med Microbiol, 2016 Dec;65(12):1476-1481.
    PMID: 27902380 DOI: 10.1099/jmm.0.000387
    The annual prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in Malaysia has been estimated to be 30 % to 40 % of all S. aureus infections. Nevertheless, data on the antimicrobial resistance and genetic diversity of Malaysian MRSAs remain few. In 2009, we collected 318 MRSA strains from various wards of our teaching hospital located in Kuala Lumpur, the capital city of Malaysia, and performed antimicrobial susceptibility testing on these strains. The strains were then molecularly characterized via staphylococcal cassette chromosome (SCC) mec and virulence gene (cna, sea, seb, sec, sed, see, seg, seh, sei, eta, etb, Panton-Valentine leukocidin and toxic shock syndrome toxin-1) typing; a subset of 49 strains isolated from the intensive care unit was also typed using PFGE. Most strains were found to be resistant to ciprofloxacin (92.5 %), erythromycin (93.4 %) and gentamicin (86.8 %). The majority (72.0 %) of strains were found to harbour SCCmec type III-SCCmercury with the presence of ccrC, and carried the sea+cna gene combination (49.3 %), with cna as the most prevalent virulence gene (94.0 %) detected. We identified four PFGE clusters, with pulsotype C (n=19) as the dominant example in the intensive care unit, where this pulsotype was found to be associated with carriage of SCCmec type III and the sea gene (P=0.05 and P=0.02, respectively). In summary, the dominant MRSA circulating in our hospital in 2009 was a clone that was ciprofloxacin, erythromycin and gentamicin resistant, carried SCCmec type III-SCCmercury with ccrC and also harboured the sea+cna virulence genes. This clone also appears to be the dominant MRSA circulating in major hospitals in Kuala Lumpur.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  2. Aklilu E, Zunita Z, Hassan L, Chen HC
    Trop Biomed, 2010 Dec;27(3):483-92.
    PMID: 21399590
    Methicillin-resistant Staphylococcus aureus (MRSA) is known to cause nosocomial infections and is now becoming an emerging problem in veterinary medicine. The objective of the study was to determine the presence of MRSA in 100 cats and dogs sampled between November 2007 and April 2008 at the University Veterinary Hospital, Universiti Putra Malaysia. MRSA was detected in 8% of pets sampled. Ten percent (5/50) and 6% (3/50) of the isolates were from dogs and cats, respectively. All MRSA isolates possessed the mecA gene and were found to be resistant to at least three antimicrobials with a minimum of Oxacillin MIC of 8 μg/mL. One isolate (CT04) had an extremely high MIC of >256 μg/mL. The MLST type ST59 found in this study have been reported earlier from Singapore and other countries as a strain from animal and community-associated MRSA respectively. Pulsed-field gel electrophoresis revealed five pulsotypes. Two isolates from cats (CT27 and CT33) and three isolates from dogs (DG16, DG20, and DG49) were respectively assigned to pulsotypes B and D. The study suggests that cats and dogs in Malaysia are potential reservoirs for MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*; Methicillin-Resistant Staphylococcus aureus/physiology
  3. Adnan SN, Ibrahim N, Yaacob WA
    J Glob Antimicrob Resist, 2017 03;8:48-54.
    PMID: 27992774 DOI: 10.1016/j.jgar.2016.10.006
    OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen with multiple antibiotic resistance that causes morbidity and mortality worldwide. Multidrug-resistant (MDR) MRSA with increased resistance to currently available antibiotics has challenged the world to develop new therapeutic agents. Stigmasterol and lupeol, from the plant Phyllanthus columnaris, exhibit antibacterial activities against MRSA. The aim of this study was to utilise next-generation sequencing (NGS) to provide further insight into the novel transcriptional response of MRSA exposed to stigmasterol and lupeol.

    METHODS: Time-kill analysis of one MRSA reference strain (ATCC 43300) and three clinical isolates (WM3, BM1 and KJ7) for both compounds was first performed to provide the bacteriostatic/bactericidal profile. Then, MRSA ATCC 43300 strain treated with both compounds was interrogated by NGS.

    RESULTS: Both stigmasterol and lupeol possessed bacteriostatic properties against all MRSA tested; however, lupeol exhibited both bacteriostatic and bactericidal properties within the same minimum inhibitory concentration and minimum bactericidal concentration values against BM1 (12.5mg/mL). Transcriptome profiling of MRSA ATCC 43300 revealed significant modulation of gene expression with multiple desirable targets by both compounds, which caused a reduction in the translation processes leading to inhibition of protein synthesis and prevention of bacterial growth.

    CONCLUSIONS: This study highlights the potential of both stigmasterol and lupeol as new promising anti-MRSA agents.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/growth & development; Methicillin-Resistant Staphylococcus aureus/metabolism*
  4. Ghasemzadeh-Moghaddam H, van Wamel W, van Belkum A, Hamat RA, Tavakol M, Neela VK
    Eur J Clin Microbiol Infect Dis, 2018 Feb;37(2):255-263.
    PMID: 29103153 DOI: 10.1007/s10096-017-3124-3
    The humoral immune responses against 46 different staphylococcal antigens in 27 bacteremia patients infected by clonally related methicillin-resistant Staphylococcus aureus (MRSA) strains of a single sequence type (ST) 239 were investigated. A group of non-infected patients (n = 31) hospitalized for different reasons served as controls. All strains were confirmed as ST 239 by S. aureus and mecA-specific PCR, spa, and multi-locus sequence typing (MLST). In each bacteremia patient, a unique pattern of S. aureus antigen-specific immune responses after infection was observed. Antibody levels among bacteremia patients were significantly higher than controls for HlgB (P = 0.001), LukD (P = 0.009), LukF (P = 0.0001), SEA (P = 0.0001), SEB (P = 0.011), SEC (P = 0.010), SEQ (P = 0.049), IsaA (P = 0.043), IsdA (P = 0.038), IsdH (P = 0.01), SdrD (P = 0.001), SdrE (P = 0.046), EsxA (P = 0.0001), and SA0104 (P = 0.0001). On the other hand, the antibody levels were significantly higher among controls for SSL3 (P = 0.009), SSL9 (P = 0.002), and SSL10 (P = 0.007) when the IgG level on the day of infection was compared with that measured on the day of admission. Diversity was observed in the immune response against the antigens. However, a set of antigens (IsaA, IsdA, IsdH, SdrD, and HlgB) triggered a similar type of immune response in different individuals. We suggest that these antigens could be considered when developing a multi-component (passive) vaccine. SEA and/or its specific antibodies seem to play a critical role during ST239 MRSA bacteremia and SEA-targeted therapy may be a strategy to be considered.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification*; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/immunology*; Methicillin-Resistant Staphylococcus aureus/pathogenicity
  5. Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V
    J Hosp Infect, 2012 Jul;81(3):206-8.
    PMID: 22633074 DOI: 10.1016/j.jhin.2012.04.015
    The minimum inhibitory concentrations (MICs) of 60 meticillin-resistant Staphylococcus aureus (MRSA) isolates from Malaysia to three antiseptic agents - benzalkonium chloride (BZT), benzethonium chloride (BAC) and chlorhexidine digluconate (CHG) - were determined. All isolates had MICs ranging from 0.5 to 2 mg/L. Antiseptic resistance genes qacA/B and smr were detected in 83.3% and 1.6% of the isolates, respectively. Carriage of qacA/B correlated with reduced susceptibility to CHG and BAC. This is the first report of the prevalence of qacA/B and smr gene carriage in Malaysian MRSA isolates, with a high frequency of qacA/B carriage. The presence of these antiseptic resistance genes and associated reduced susceptibility to antiseptic agents may have clinical implications.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification; Methicillin-Resistant Staphylococcus aureus/metabolism
  6. Santiago C, Lim KH, Loh HS, Ting KN
    Molecules, 2015 Mar 10;20(3):4473-82.
    PMID: 25764489 DOI: 10.3390/molecules20034473
    Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/physiology*
  7. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN
    Biomed Res Int, 2014;2014:965348.
    PMID: 25101303 DOI: 10.1155/2014/965348
    The inhibitory activity of a semipure fraction from the plant, Acalypha wilkesiana assigned as 9EA-FC-B, alone and in combination with ampicillin, was studied against methicillin-resistant Staphylococcus aureus (MRSA). In addition, effects of the combination treatment on PBP2a expression were investigated. Microdilution assay was used to determine the minimal inhibitory concentrations (MIC). Synergistic effects of 9EA-FC-B with ampicillin were determined using the fractional inhibitory concentration (FIC) index and kinetic growth curve assay. Western blot experiments were carried out to study the PBP2a expression in treated MRSA cultures. The results showed a synergistic effect between ampicillin and 9EA-FC-B treatment with the lowest FIC index of 0.19 (synergism ≤ 0.5). The presence of 9EA-FC-B reduced the MIC of ampicillin from 50 to 1.56 μg mL(-1). When ampicillin and 9EA-FC-B were combined at subinhibitory level, the kinetic growth curves were suppressed. The antibacterial effect of 9EA-FC-B and ampicillin was shown to be synergistic. The synergism is due the ability of 9EA-FC-B to suppress the activity of PBP2a, thus restoring the susceptibility of MRSA to ampicillin. Corilagin was postulated to be the constituent responsible for the synergistic activity showed by 9EA-FC-B.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics
  8. Lim KT, Teh CS, Yusof MY, Thong KL
    Trans R Soc Trop Med Hyg, 2014 Feb;108(2):112-8.
    PMID: 24336696 DOI: 10.1093/trstmh/trt111
    The prevalence of resistance to rifampicin and fusidic acid among Malaysian strains of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. This study aimed to determine the mechanisms of rifampicin and fusidic acid resistance and the genetic diversity of MRSA strains from a Malaysian tertiary hospital.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/genetics*
  9. Al-Talib H, Yean CY, Al-Khateeb A, Hasan H, Ravichandran M
    J Microbiol Immunol Infect, 2014 Dec;47(6):484-90.
    PMID: 23927820 DOI: 10.1016/j.jmii.2013.06.004
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for significant numbers of nosocomial and community-acquired infections worldwide. Molecular diagnosis for MRSA nasal carriers is increasingly important for rapid detection and screening of MRSA colonization because the conventional methods are time consuming and labor intensive. However, conventional polymerase chain reaction (PCR) tests still require cold-chain storage as well as trained personnel, which makes them unsuitable for rapid high-throughput analysis. The aim of this study was to develop a thermostabilized PCR assay for MRSA in a ready-to-use form that requires no cold chain.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  10. Lim KT, Hanifah YA, Mohd Yusof MY, Ito T, Thong KL
    J Microbiol Immunol Infect, 2013 Jun;46(3):224-33.
    PMID: 23523045 DOI: 10.1016/j.jmii.2013.02.001
    Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) continue to be a problem for clinicians worldwide. The objective of this study was to determine the changes in antibiograms of MRSA and their genotypic characteristics.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  11. Tiwari S, Sahu M, Rautaraya B, Karuna T, Mishra SR, Bhattacharya S
    J Indian Med Assoc, 2011 Nov;109(11):800-1.
    PMID: 22666934
    Methicillin-resistant Staphylococcus aureus (MRSA) emerged as a nosocomial pathogen in early 1960s, causing Increasing number of outbreaks in 19708, first reported in a teaching hospital in Malaysia in 1972, causing increased mortality, morbidity, and healthcare costs. Aim of this study is to screen out MRSA from various clinical samples and to see their antibiotic susceptibility pattern. From May 2008 to May 2009, 204 S aureus strains were isolated, out of which 114 (55.8%) were MRSA, and rest methicillin-sensitive Staphylococcus aureus (MSSA). Most of the MRSA strains were obtained from pus (45%) followed by urine (20.5%). Frequency of isolating MRSA were maximum in catheter tip (80%) followed by blood (66.7%) and pus (58.7%). MRSA strains were showing 100% sensitivity to vancomycin and Iinezolid, whereas 92.9% to teicoplanin. Therefore it is concluded that antibiotics other than vancomycin can be used as anti-MRSA agents after sensitivity test, as well as irrational and indiscriminate use of antibiotics can be avoided.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  12. Ghaznavi-Rad E, Ghasemzadeh-Moghaddam H, Shamsudin MN, Hamat RA, Sekawi Z, Aziz MN, et al.
    Infect Control Hosp Epidemiol, 2010 Dec;31(12):1302-3.
    PMID: 21028965 DOI: 10.1086/657587
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  13. Lim KT, Hanifah YA, Mohd Yusof MY, Thong KL
    Jpn J Infect Dis, 2010 Jul;63(4):286-9.
    PMID: 20657072
    Mupirocin is used topically to treat skin infection caused by methicillin-resistant Staphylococcus aureus (MRSA). One hundred eighty-eight strains (isolated in 2003, 2004, 2007, and 2008) were tested for mupirocin susceptibility using disk diffusion method and minimum inhibitory concentration (MIC). Mupirocin resistance was detected in 10 (5%) strains with 2 of them showing MIC of 256 mg/l. PCR detection using gene-specific primers showed that all 10 mupirocin-resistant strains harbored ileS2 gene whereas mupA gene was detected in 2 mupirocin-resistant strains with MIC of 256 mg/l. Amplification of agr grouping and SCCmec typing showed that all 10 strains were agr group I and SCCmec type III. Sequence analysis of region X of the spa gene yielded 4 distinct spa types (t037, t363, t421, and t6405) which were clonally related. In conclusion, the rate of mupirocin resistance in Malaysia is still low but is much higher than previous reports in Malaysia.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  14. Bitrus AA, Zunita Z, Bejo SK, Othman S, Nadzir NA
    BMC Microbiol, 2017 04 04;17(1):83.
    PMID: 28376716 DOI: 10.1186/s12866-017-0994-6
    BACKGROUND: Staphylococcus aureus more than any other human pathogen is a better model for the study of the adaptive evolution of bacterial resistance to antibiotics, as it has demonstrated a remarkable ability in its response to new antibiotics. This study was designed to investigate the in vitro transfer of mecA gene from methicillin resistant S. aureus to methicillin susceptible S. aureus.

    RESULT: The recipient transconjugants were resistant to erythromycin, cefpodoxime and were mecA positive. PCR amplification of mecA after mix culture plating on Luria Bertani agar containing 100 μg/mL showed that 75% of the donor and 58.3% of the recipient transconjugants were mecA positive. Additionally, 61.5% of both the donor cells and recipient transconjugants were mecA positive, while 46.2% and 41.75% of both donor and recipient transconjugants were mecA positive on LB agar containing 50 μg/mL and 30 μg/mL respectively.

    CONCLUSION: In this study, the direction of transfer of phenotypic resistance as well as mecA was observed to have occurred from the donor to the recipient strains. This study affirmed the importance of horizontal transfer events in the dissemination of antibiotics resistance among different strains of MRSA.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics*
  15. Che Hamzah AM, Yeo CC, Puah SM, Chua KH, A Rahman NI, Abdullah FH, et al.
    J Med Microbiol, 2019 Sep;68(9):1299-1305.
    PMID: 31140965 DOI: 10.1099/jmm.0.000993
    The spread of multidrug-resistant Staphylococcus aureus is a public health concern. The inducible macrolide-lincosamide-streptogrammin B (iMLSB ) phenotype (or inducible clindamycin resistance) is associated with false clindamycin susceptibility in routine laboratory testing and may lead to treatment failure. Tigecycline resistance remains rare in S. aureus worldwide. This study aims to determine the antimicrobial susceptibility profiles of clinical isolates of S. aureus obtained from the main tertiary hospital in Terengganu state, Malaysia, from July 2016 to June 2017. The antimicrobial susceptibilities of 90 methicillin-resistant S. aureus (MRSA) and 109 methicillin-susceptible S. aureus (MSSA) isolates were determined by disc diffusion with the iMLSB phenotype determined by D-test. Multidrug resistance (MDR) and the iMLSB phenotype were more prevalent in MRSA (84.4 and 46.7  %, respectively) compared to MSSA isolates. All five tigecycline-resistant isolates were MRSA. The high incidence of MDR and the iMLSB phenotype and the emergence of tigecycline resistance in the Terengganu S. aureus isolates warrants continuous vigilance.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  16. Ghasemzadeh-Moghaddam H, Neela V, Goering R, Mariana NS
    Trop Biomed, 2012 Sep;29(3):429-33.
    PMID: 23018506
    We investigated the potential of USA300 MRSA emergence in Malaysia by examining 268 MSSA isolates from both community (110) and healthcare (158) settings. Nine isolates from both the environments were similar to the USA300 MRSA background based on MLST, spa and PFGE type. These results underscore the importance of continued surveillance to monitor the emergence of USA300 MRSA in Malaysia.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  17. Teow SY, Ali SA
    Pak J Pharm Sci, 2016 Nov;29(6):2119-2124.
    PMID: 28375134
    Peptides derived from HIV-1 transmembrane proteins have been extensively studied for antimicrobial activities, and they are known as antimicrobial peptides (AMPs). These AMPs have also been reported to potently combat the drug-resistant microbes. In this study, we demonstrated that peptide #6383 originated from HIV-1 MN strain membrane-spanning domain of gp41 was active (2-log reductions) at 100βg/mL (56.5βM) against methicillin-resistant Staphylococcus aureus (MRSA) in 10% and 50% human plasma-supplemented phosphate buffered saline (PBS). The activity was further enhanced (3-log reductions) in the presence of 5% human serum albumin (HSA) alone. All bactericidal activities were achieved within 6 hours. At 100μg/mL, the peptide showed only 13% toxicity against human erythrocytes. This peptide can serve as an attractive template for a design of a novel peptide antibiotic against drug-resistant bacteria. By sequence-specific engineering or modifications, we anticipated that the bactericidal activity and the reduced toxicity against human erythrocytes will be improved.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/growth & development
  18. Pusparajah P, Letchumanan V, Law JW, Ab Mutalib NS, Ong YS, Goh BH, et al.
    Int J Mol Sci, 2021 Aug 28;22(17).
    PMID: 34502269 DOI: 10.3390/ijms22179360
    Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/physiology
  19. Medina MFE, Alaba PA, Estrada-Zuñiga ME, Velázquez-Ordoñez V, Barbabosa-Pliego A, Salem MZM, et al.
    Microb Pathog, 2017 Dec;113:286-294.
    PMID: 29101063 DOI: 10.1016/j.micpath.2017.10.053
    The aim of this study is to investigate the biopotency of methanolic extracts of Vitex mollis, Psidium guajava, Dalbergia retusa, and Crescential alata leaves against various staphylococcal strains isolated from cattle and rabbits. Methicillin-resistant S. aureus strains were isolated from cattle, while other strains were isolated from rabbits using standard methodology. The total phytochemical phenolic and saponins contents were obtained being the main groups of the antinutritional factors. The antimicrobial activity of the extracts against the standard culture of S. aureus (control) and S. aureus isolated from cattle and rabbits were investigated comparatively relative to that of oxacillin. It was found that both the control S. aureus and the isolated S. aureus are susceptible to all the four plant extracts, and sensitive to oxacillin. Of all the S. aureus including the control, MRSA2 is the most susceptible to all the extracts at 1000 μg/mL, except that of V. mollis where it is the least susceptible. Among all the plant extracts, P. guajava is the most active against MRSA2 and SOSA2. Therefore, the isolates from cattle (MRSA1 and MRSA2) are more susceptible to all the plant extracts than the isolates from rabbits. Among all the rabbit isolates, CoNS3 is the least susceptible to the extracts. Since all the plant extracts exhibit remarkable inhibitory activities against all the S. aureus strains, they are promising towards the production of therapeutic drugs.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  20. Leung AKC, Barankin B, Leong KF
    World J Pediatr, 2018 04;14(2):116-120.
    PMID: 29508362 DOI: 10.1007/s12519-018-0150-x
    BACKGROUND: Staphylococcal-scalded skin syndrome (SSSS), also known as Ritter disease, is a potentially life-threatening disorder and a pediatric emergency. Early diagnosis and treatment is imperative to reduce the morbidity and mortality of this condition. The purpose of this article is to familiarize physicians with the evaluation, diagnosis, and treatment of SSSS.

    DATA SOURCES: A PubMed search was completed in Clinical Queries using the key terms "Staphylococcal scalded skin syndrome" and "Ritter disease".

    RESULTS: SSSS is caused by toxigenic strains of Staphylococcus aureus. Hydrolysis of the amino-terminal extracellular domain of desmoglein 1 by staphylococcal exfoliative toxins results in disruption of keratinocytes adhesion and cleavage within the stratum granulosum which leads to bulla formation. The diagnosis is mainly clinical, based on the findings of tender erythroderma, bullae, and desquamation with a scalded appearance especially in friction zones, periorificial scabs/crusting, positive Nikolsky sign, and absence of mucosal involvement. Prompt empiric treatment with intravenous anti-staphylococcal antibiotic such as nafcillin, oxacillin, or flucloxacillin is essential until cultures are available to guide therapy. Clarithromycin or cefuroxime may be used should the patient have penicillin allergy. If the patient is not improving, critically ill, or in communities where the prevalence of methicillin-resistant S. aureus is high, vancomycin should be used.

    CONCLUSION: A high index of suspicion is essential for an accurate diagnosis to be made and treatment promptly initiated.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/pathogenicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links