Displaying publications 101 - 120 of 262 in total

Abstract:
Sort:
  1. Pulliam JR, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al.
    J R Soc Interface, 2012 Jan 7;9(66):89-101.
    PMID: 21632614 DOI: 10.1098/rsif.2011.0223
    Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Niño Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.
    Matched MeSH terms: Zoonoses/epidemiology*; Zoonoses/transmission; Zoonoses/virology
  2. Heymann DL
    J Public Health Policy, 2005 Apr;26(1):133-9.
    PMID: 15906882
    The microbes that cause infectious diseases are complex, dynamic, and constantly evolving. They reproduce rapidly, mutate frequently, breach species barriers, adapt with relative ease to new hosts and new environments, and develop resistance to the drugs used to treat them. In their article "Meeting the challenge of epidemic infectious diseases outbreaks: an agenda for research", Kai-Lit Phua and Lai Kah Lee clearly demonstrate how social, behavioural and environmental factors, linked to a host of human activities, have accelerated and amplified these natural phenomena. By reviewing published and non-published information about outbreaks of Nipah virus in Malaysia, severe acute respiratory syndrome (SARS) and avian influenza in Asia, and the HIV pandemic, they provide a series of examples that demonstrate the various social, behavioural and environmental factors of these recent infectious disease outbreaks. They then analyse some of these same determinants in important historical epidemics and pandemics such as plague in medieval Europe, and conclude that it is important to better understand the social conditions that facilitate the appearance of diseases outbreaks in order to determine why and how societies react to outbreaks and their impact on different population groups.
    Matched MeSH terms: Zoonoses/epidemiology
  3. Moon RW, Sharaf H, Hastings CH, Ho YS, Nair MB, Rchiad Z, et al.
    Proc Natl Acad Sci U S A, 2016 Jun 28;113(26):7231-6.
    PMID: 27303038 DOI: 10.1073/pnas.1522469113
    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.
    Matched MeSH terms: Zoonoses
  4. Ling JLL, Koh KL, Tai E, Sakinah Z, Nor Sharina Y, Hussein A
    Cureus, 2018 Oct 08;10(10):e3428.
    PMID: 30546976 DOI: 10.7759/cureus.3428
    In human, sporotrichosis infection commonly manifests as skin lesions through direct inoculation. It is rarely associated with ocular manifestation via a zoonotic transmission. We describe a young lady who presented with acute left eye granulomatous conjunctivitis who had a history of exposure to her sick cat diagnosed with sporotrichosis infection. Sporothrix schenckii was isolated from the culture of the excised conjunctival tissue. The patient recovered fully after six months of oral anti-fungal treatment. Clinicians should be aware of this new zoonotic infection transmitted by infected felines as it is reversible with timely diagnosis and initiation of anti-fungal therapy.
    Matched MeSH terms: Zoonoses
  5. Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007131.
    PMID: 30677033 DOI: 10.1371/journal.pntd.0007131
    BACKGROUND: Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens.

    METHODOLOGY/PRINCIPAL FINDINGS: Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75).

    CONCLUSIONS/SIGNIFICANCE: This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen.

    Matched MeSH terms: Zoonoses
  6. Mohamed NA, Said MH, Mohd Rani MD, Ramli S, Isahak I
    Trop Biomed, 2019 Sep 01;36(3):709-717.
    PMID: 33597493
    Bats are slowly gaining recognition as a potential reservoir for viruses harmful to human (Smith and Wang, 2013). Bats are reservoir to viruses causing Ebola virus diseases (EBV) (Leroy et al., 2005), Nipah Encephalitis (NiV) (Chua et al., 2002), SARS(Li et al., 2005) and MERS-CoV (Yang et al., 2015) being the latest one making headlines. About 18 years ago, a major outbreak of Nipah virus encephalitis occurred in Peninsular Malaysia resulted in the deaths of 105 persons and the slaughter of approximately 1.1 million pigs. In 2006, a novel bat orthoreovirus was found to be associated with acute respiratory syndrome in Malaysia. Following that incidents, many studies have been done on bats, particularly to determine their species, behaviour, and antibody level and there were also studies in human on antibody prevalence to batsrelated viruses e.g. Nipah and Hendra and PRV. Humans may become infected with viruses from bats through intermediate host (swine, horse) or through aerosol or direct contact with bats. Communities living adjacent to bat roosts should aware of possible risk of infection transmission from bats. An earlier study in Guatemala demonstrated that risk of exposure to bats in communities near bats roosts was common, but recognition of the potential for disease transmission from bats was low (Moran et al., 2015). Surprisingly, there is no local published data on public awareness towards bats-related infection despite potential risk of getting the infection. This study aimed to determine knowledge and awareness on bat-related infections, attitudes towards bats and practices related to health-seeking behaviours following exposure to bats.
    Matched MeSH terms: Zoonoses*
  7. Daud A, Fuzi NMHM, Arshad MM, Kamarudin S, Mohammad WMZW, Amran F, et al.
    Vet World, 2018 Jun;11(6):840-844.
    PMID: 30034179 DOI: 10.14202/vetworld.2018.840-844
    Background: Leptospirosis is a zoonotic disease that infects human and livestock which causes economic losses to the farmers. It has been reported as one of the causes of reproductive failure in cattle and other ruminants, determining abortions, stillbirth, weak newborns, and decrease in their growth rate and milk production.

    Aim: The objectives of this study were to determine the leptospirosis seroprevalence and to identify the predominant infecting serovars among cattle.

    Materials and Methods: A cross-sectional study involving 420 cattle from six randomly selected districts in Kelantan was conducted. A serological test using the microscopic agglutination test was conducted in the Institute of Medical Research with a cutoff titer for seropositivity of ≥1:100.

    Results: The overall prevalence of leptospirosis seropositivity among cattle in this study was 81.7% (95% confidence interval: 63.5, 80.1). The most common reaction obtained with the sera tested was from the serovar Sarawak with 78.8%.

    Conclusion: A high seroprevalence of leptospiral antibodies was found among cattle in Northeastern Malaysia. These findings urge that more studies are required to determine the reasons for the high seroprevalence among the cattle along with its transmission and pathogenicity of the local serovar Sarawak.

    Matched MeSH terms: Zoonoses
  8. Jänisch T, Junghanss T
    Med. Klin. (Munich), 2000 Jul 15;95(7):392-9.
    PMID: 10943100
    Viruses have become more mobile alongside with increasing human mobility and speed of travel. At the same time we get access to information on viral outbreaks and epidemics from large parts of the world faster than ever before. Two recent epidemics will be presented to explore the value and the consequences of communicating epidemiological information through the Internet. The epidemiology, clinical features, diagnostic procedures and prophylaxis of imported viral infections are presented. Risk factors for the emergence and resurgence of viral diseases are being discussed.
    Matched MeSH terms: Zoonoses/epidemiology
  9. CHIN W, CONTACOS PG, COATNEY GR, KIMBALL HR
    Science, 1965 Aug 20;149(3686):865.
    PMID: 14332847 DOI: 10.1126/science.149.3686.865
    A quotidian-type parasite, Plasmodium knowlesi, has been found as a natural infection in man. The infection was acquired by a white male during a short visit to peninsular Malaysia. This occurrence constitutes the first proof that simian malaria is a true zoonosis.
    Matched MeSH terms: Zoonoses*
  10. Kaku Y
    Uirusu, 2004 Dec;54(2):237-42.
    PMID: 15745162
    Nipah virus (NiV), emerged in Peninsular Malaysia, caused an outbreak of severe febrile encephalitis in humans and respiratory diseases in pigs between 1998 and 1999. By May of 1999, the death of 105 humans and the culling of about 1.1 million pigs were reported. Fruitbats of Pteropid species were identified as the natural reservoir hosts. The epidemiological studies suggested that NiV was introduced into pig farms by fruitbats, and was than transmitted to humans (mainly pig farmers) and other animals such as dogs, cats and horses. In 2004, NiV reappeared in Bangladesh with greater lethality. In contrast to the Malaysia case, epidemiologic characteristics of this outbreak suggested the possibility of fruitbats-to-person, or person-to-person transmission. In this article, the epidemiological comparison between two outbreaks in Malaysia and Bangladesh, and the new-trends of virological studies of NiV will be discussed.
    Matched MeSH terms: Zoonoses/epidemiology*; Zoonoses/transmission*; Zoonoses/virology
  11. Suriya R, Hassan L, Omar AR, Aini I, Tan CG, Lim YS, et al.
    Zoonoses Public Health, 2008 Sep;55(7):342-51.
    PMID: 18667027 DOI: 10.1111/j.1863-2378.2008.01138.x
    Following a series of H5N1 cases in chickens and birds in a few states in Malaysia, there was much interest in the influenza A viruses subtypes that circulate among the local pig populations. Pigs may act as a mixing vessel for avian and mammal influenza viruses, resulting in new reassorted viruses. This study investigated the presence of antibodies against influenza H1N1 and H3N2 viruses in pigs from Peninsular Malaysia using Herdcheck Swine Influenza H1N1 and H3N2 Antibody Test Kits. At the same time, the presence of influenza virus was examined from the nasal swabs of seropositive pigs by virus isolation and real time RT-PCR. The list of pig farms was obtained from the headquarters of the Department of Veterinary Services, Malaysia, and pig herds were selected randomly from six of 11 states in Peninsular Malaysia. A total of 727 serum and nasal swab samples were collected from 4- to 6-month-old pigs between May and August 2005. By ELISA, the seroprevalences of swine influenza H1N1 and H3N2 among pigs were 12.2% and 12.1% respectively. Seropositivity for either of the virus subtypes was detected in less than half of the 41 sampled farms (41.4%). Combination of both subtypes was detected in 4% of all pigs and in 22% of sampled farms. However, no virus or viral nucleic acid was detected from nasal samples. This study identified that the seropositivity of pigs to H1N1 and H3N2 based on ELISA was significantly associated with factors such as size of farm, importation or purchase of pigs, proximity of farm to other pig farms and the presence of mammalian pets within the farm.
    Matched MeSH terms: Zoonoses*
  12. Tan LH, Fong MY, Mahmud R, Muslim A, Lau YL, Kamarulzaman A
    Parasitol Int, 2011 Jan;60(1):111-3.
    PMID: 20951228 DOI: 10.1016/j.parint.2010.09.010
    Five local Malaysian patients with clinical manifestations consistent with lymphatic filariasis were referred to our medical centre between 2003 and 2006. Although no microfilariae (mf) were detected in their nocturnal blood samples, all were diagnosed to have lymphatic filariasis on the basis of clinical findings and positive serology results. PCR on their blood samples revealed that two of the patients were infected with Brugia pahangi, an animal filarial worm hitherto not known to cause human disease in the natural environment. All the patients were successfully treated with anti-filarial drugs: four patients were treated with a combination of diethylcarbamazine (DEC) and albendazole, and one with doxycycline. Four of them were residents of Petaling Jaya, a residential suburbia located 10 km southwest of Kuala Lumpur city, Malaysia. The fifth patient was a frequent visitor of the suburbia. This suburbia has no history or record of B. malayi infection. The most likely vector of the worm was Armigeres subalbatus as extensive entomological surveys within the suburbia revealed only adult females of this mosquito species were infected with B. pahangi larvae. Wild monkeys caught in the suburbia were free from B. pahangi mf, but domestic cats were mf positive. This suggests that infected cats might be the source of the zoonotic infection in the suburbia.
    Matched MeSH terms: Zoonoses/parasitology*
  13. Tee KK, Takebe Y, Kamarulzaman A
    Int J Infect Dis, 2009 May;13(3):307-18.
    PMID: 19010076 DOI: 10.1016/j.ijid.2008.09.005
    Over the past decade, a number of unique zoonotic and non-zoonotic viruses have emerged in Malaysia. Several of these viruses have resulted in significant morbidity and mortality to those affected and they have imposed a tremendous public health and economic burden on the state. Amongst the most devastating was the outbreak of Nipah virus encephalitis in 1998, which resulted in 109 deaths. The culling of more than a million pigs, identified as the amplifying host, ultimately brought the outbreak under control. A year prior to this, and subsequently again in 2000 and 2003, large outbreaks of hand-foot-and-mouth disease due to enterovirus 71, with rare cases of fatal neurological complications, were reported in young children. Three other new viruses - Tioman virus (1999), Pulau virus (1999), and Melaka virus (2006) - whose origins have all been linked to bats, have been added to the growing list of novel viruses being discovered in Malaysia. The highly pathogenic H5N1 avian influenza has also been detected in Malaysia with outbreaks in poultry in 2004, 2006, and 2007. Fortunately, no human infections were reported. Finally, the HIV/AIDS epidemic has seen the emergence of an HIV-1 recombinant form (CRF33_01B) in HIV-infected individuals from various risk groups, with evidence of ongoing and rapid expansion.
    Matched MeSH terms: Zoonoses/epidemiology; Zoonoses/transmission; Zoonoses/virology*
  14. Pathmanathan R, Kan SP
    Trop Geogr Med, 1992 Jan;44(1-2):102-8.
    PMID: 1496700
    Three cases of muscular sarcocystosis from West Malaysia are reported. The morphological features of the parasites from these three cases are similar to the eight cases previously reported from this country. A review of this total of eleven cases of muscular sarcocystosis showed that they were all incidental findings, where man acted as intermediate hosts of as yet unknown Sarcocystis spp. These cases of muscular sarcocystosis were probably zoonotic in origin and associated with close contact with definitive hosts (both domestic and wild animals) thus permitting the contamination of food and drink with sporocysts shed by these definitive hosts. These infections were probably acquired locally as most of the subjects were born in Malaysia and none had ever left the country to stay elsewhere. Eight of the eleven cases reported were associated with malignancies, especially of the tongue and nasopharynx.
    Matched MeSH terms: Zoonoses
  15. Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, et al.
    Proc Biol Sci, 2019 Jan 16;286(1894):20182351.
    PMID: 30963872 DOI: 10.1098/rspb.2018.2351
    The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.
    Matched MeSH terms: Zoonoses/epidemiology*
  16. Bhartiya NM, Husain AA, Daginawala HF, Singh L, Kashyap RS
    Malays J Med Sci, 2020 Dec;27(6):15-26.
    PMID: 33447131 DOI: 10.21315/mjms2020.27.6.3
    Background: Human brucellosis is an important zoonotic disease of public health and often remains neglected owing to lack of sensitive and efficient diagnostic methods. This study evaluates diagnostic utility of in-house designed enzyme-linked immunosorbent assay (ELISA) using whole-cell antigens of Brucella abortus (B. abortus) S19 against the commercially available kits.

    Methods: A prospective cohort study involving different populations within the Vidarbha regions of Maharashtra, India was conducted through camps organised from May 2009 to October 2015. A total of 568 serum samples were collected from high-risk people recruited as study cohorts based on inclusion criteria, additional risk factors and clinical symptoms. Samples were evaluated by indirect ELISA using the whole-cell antigens of B. abortus. The results were compared with the commercially available IgG detection ELISA kit to ascertain the specificity and sensitivity of the developed test.

    Results: Fever, body ache, joint pain, lower back pain, loss of appetite and weight loss were major symptoms associated with the disease. With the cut-off of > 0.8, the positivity of brucellosis infection was at 12.32% (70/568) compared to 9.33% (53/568) as detected by the commercial kit. The in-house developed ELISA method yielded a sensitivity of 87.5% and specificity of 99.18% as compared to the commercial kits (sensitivity -80.30% and specificity -99.6%).

    Discussion: The B. abortus S19-derived whole-cell protein-based ELISA is rapid and cost-effective and can be used for screening brucellosis infection in lieu of the commercially available ELISA kits.

    Matched MeSH terms: Zoonoses
  17. Mallhi TH, Khan YH, Sarriff A, Khan AH
    Lancet Infect Dis, 2016 12;16(12):1332-1333.
    PMID: 27998596 DOI: 10.1016/S1473-3099(16)30453-4
    Matched MeSH terms: Zoonoses
  18. Goh SH, Ismail R, Lau SF, Megat Abdul Rani PA, Mohd Mohidin TB, Daud F, et al.
    PMID: 31035316 DOI: 10.3390/ijerph16091499
    This study determined the potential risk factors that may contribute to seropositivity among dogs and dog handlers from working dog and dog shelter institutions. Data was collected from dogs (n = 266) and dog handlers (n = 161) using a standardised guided questionnaire. Serum obtained from the dogs and dog handlers was tested using the microscopic agglutination test (MAT). A logistic regression analysis was used to predict leptospiral seropositivity of dogs and dog handlers based on potential risk factors. A total of 22.2% of dogs and 21.7% of dog handlers were seropositive. The significant predictors for the dogs' seropositivity were presence of rats (OR = 4.61 (95% CI: 1.05, 20.33), p = 0.043) and shared common area (OR = 5.12 (95% CI: 1.94, 13.46), p = 0.001) within the organisation. Significant predictor for dog handler seropositivity was contact time with the dogs of more than six hours/day (OR = 3.28 (95% CI: 1.28, 8.40), p = 0.013) after controlling for the effect of other risk factors such as small mammal contact, rat infestation at home, flooding at housing area (within three months) and urban locality. The exposure to various disease sources identified poses risk to dogs and dog handlers. Risk could be reduced with adequate application of protection at work while handling dogs and thus limiting contact with these sources and reducing exposure to infection.
    Matched MeSH terms: Zoonoses/blood; Zoonoses/epidemiology*
  19. Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, et al.
    mBio, 2021 Jan 12;12(1).
    PMID: 33436435 DOI: 10.1128/mBio.02698-20
    Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
    Matched MeSH terms: Zoonoses/microbiology; Zoonoses/parasitology; Zoonoses/pathology*; Zoonoses/virology
  20. Sato S, Tojo B, Hoshi T, Minsong LIF, Kugan OK, Giloi N, et al.
    PMID: 31426380 DOI: 10.3390/ijerph16162954
    Plasmodium knowlesi (Pk) is a malaria parasite that naturally infects macaque monkeys in Southeast Asia. Pk malaria, the zoonosis transmitted from the infected monkeys to the humans by Anopheles mosquito vectors, is now a serious health problem in Malaysian Borneo. To create a strategic plan to control Pk malaria, it is important to estimate the occurrence of the disease correctly. The rise of Pk malaria has been explained as being due to ecological changes, especially deforestation. In this research, we analysed the time-series satellite images of MODIS (MODerate-resolution Imaging Spectroradiometer) of the Kudat Peninsula in Sabah and created the "Pk risk map" on which the Land-Use and Land-Cover (LULC) information was visualised. The case number of Pk malaria of a village appeared to have a correlation with the quantity of two specific LULC classes, the mosaic landscape of oil palm groves and the nearby land-use patches of dense forest, surrounding the village. Applying a Poisson multivariate regression with a generalised linear mixture model (GLMM), the occurrence of Pk malaria cases was estimated from the population and the quantified LULC distribution on the map. The obtained estimations explained the real case numbers well, when the contribution of another risk factor, possibly the occupation of the villagers, is considered. This implies that the occurrence of the Pk malaria cases of a village can be predictable from the population of the village and the LULC distribution shown around it on the map. The Pk risk map will help to assess the Pk malaria risk distributions quantitatively and to discover the hidden key factors behind the spread of this zoonosis.
    Matched MeSH terms: Zoonoses/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links